Free Space to the Rescue

There’s not much we can do about the scenario I just described; you can’t erase individual pages, that’s the reality of NAND-flash. There are some things we can do to make it better though.

The most frequently used approach is to under provision the drive. Let’s say we only shipped our drive with 20KB of space to the end user, but we actually had 24KB of flash on the drive. The remaining 4KB could be used by our controller; how, you say?

In the scenario from the last page we had to write 12KB of data to our drive, but we only had 8KB in free pages and a 4KB invalid page. In order to write the 12KB we had to perform a read-modify-write which took over twice as long as a 12KB write should take.

If we had an extra 4KB of space our 12KB write from earlier could’ve proceeded without a problem. Take a look at how it would’ve worked:

We’d write 8KB to the user-facing flash, and then the remaining 4KB would get written to the overflow flash. Our write speed would still be 12KB/s and everything would be right in the world.

Now if we deleted and tried to write 4KB of data however, we’d run into the same problem again. We’re simply delaying the inevitable by shipping our drive with an extra 4KB of space.

The more spare-area we ship with, the longer our performance will remain at its peak level. But again, you have to pay the piper at some point.

Intel ships its X25-M with 7.5 - 8% more area than is actually reported to the OS. The more expensive enterprise version ships with the same amount of flash, but even more spare area. Random writes all over the drive are more likely in a server environment so Intel keeps more of the flash on the X25-E as spare area. You’re able to do this yourself if you own an X25-M; simply perform a secure erase and immediately partition the drive smaller than its actual capacity. The controller will use the unpartitioned space as spare area.

Understanding the SSD Performance Degradation Problem The Trim Command: Coming Soon to a Drive Near You
Comments Locked

250 Comments

View All Comments

  • blackburried - Wednesday, March 25, 2009 - link

    It's referred to as "discard" in the kernel functions.

    It works very well w/ SSD's that support TRIM, like fusion-io's drives.
  • Iger - Wednesday, March 25, 2009 - link

    This is the best review I've read in a very long time.
    Thank you very much!
  • BailoutBenny - Tuesday, March 24, 2009 - link

    Great in depth article on flash based SSDs. I'm waiting for PRAM though.
  • orclordrh - Tuesday, March 24, 2009 - link

    Very illuminating article, very well written and researched. It made me glad that I didn't pull the trigger on an SSD for my I7 machine and regret not buying OCZ memory! I'm interested in adding an SSD as the scratch disk for Photoshop CS4 to use. I don't really launch applications very often, say once a week on the weekly reboot and keep 6-8 apps open at all times. I have 12GB of memory for that. The benchmarks were very interesting, but what sort of activity does Photoshop scratch usage create? Large files or random writes? What type of SSD would be most cost effective here?
    An SSD does sound better than a SSD!
  • semo - Wednesday, March 25, 2009 - link

    wait for ddr3 to enter the mainstream and buy loads of memory.

    use a ramdisk for your adobe scratch area. much faster than ssd and no wear to worry about (not that you would worry that much with modern ssds anyway).

    http://www.ghacks.net/2007/12/14/use-a-ramdisk-to-...">http://www.ghacks.net/2007/12/14/use-a-ramdisk-to-...

    there is also a paid for and more feature rich ramdisk out there. can't remember the name
  • strikeback03 - Wednesday, March 25, 2009 - link

    I'll have to check when I get home, but I believe the recommended size for the scratch disk is upwards of 10GB. So would need a motherboard that supports a LOT of RAM to give enough to main memory plus a scratch disk.
  • strikeback03 - Wednesday, March 25, 2009 - link

    I was wondering the same thing. I'd guess it would be a lot of writing/erasing, so an SSD might not be the best from a longevity standpoint, but if your system is hitting the scratch disk often then the speed might make it worthwhile.
  • mikepers - Tuesday, March 24, 2009 - link

    Anand,

    I wanted to compliment you on what I think was an excellent article. This is the type of thing I really have always liked from Anandtech. The detailed background, the technical reasons for the issues and then a thorough review of the current state of things.

    I just finished upgrading my desktop. The only remaining item I wanted to replace was the hard disk. I had been thinking about getting a Velociraptor but instead I just ordered a 60GB Vertex from Newegg.

    Thanks again for all the work.

    Mike P.
  • ameatypie - Monday, March 23, 2009 - link

    That sure was a lot to take in! Fantastic article though, it has really opened my eyes to the possibilities that Solid State Drives provide. Probably wont be buying one in the immediate future given the so-called depression and such things, but i will certainly keep up with SSD progress.
    Thanks again for your fantastic articles - im sure im not the only one who really appreciates them :)
  • coopchennick - Monday, March 23, 2009 - link

    Hey Anand, I just finished reading through this whole article and I'm very impressed with the thoroughness and how informative it was.

    You just acquired a new regular reader.

Log in

Don't have an account? Sign up now