Latency vs. Bandwidth: What to Look for in a SSD

It took me months to get my head wrapped around it, but I think I finally get it. We often talk about the concepts of bandwidth and latency but rarely are they as tangible as they are here today.

When I speak of latency I’m talking about how long it takes to complete a request, or fetch a block of data. When I mention bandwidth, I’m talking about how much you can read/write at once. Think of latency as the speed limit and bandwidth as the number of lanes on a high way.

If you’re the only car on the highway, you’re going to notice the impact of latency more than bandwidth. A speed limit of 70 mph instead of 35 is going to impact you much more than if you added more lanes to the road.

If you’re a city planner however and your only concern is getting as many people to work and back, you’re going to notice the impact of bandwidth more than latency. It doesn’t matter how fast a single car can move, what matters is how many cars you can move during rush hour traffic.

I’d argue that if you’re a desktop user and you’re using an SSD as a boot/application drive, what will matter most is latency. After you’ve got your machine setup the way you want it, the majority of accesses are going to be sequential reads and random reads/writes of very small file sizes. Things like updating file tables, scanning individual files for viruses, writing your web browser cache. What influences these tasks is latency, not bandwidth.

If you were constantly moving large multi-gigabyte files to and from your disk then total bandwidth would be more important. SSDs are still fairly limited in size and I don’t think you’ll be backing up many Blu-ray discs to them given their high cost per GB. It’s latency that matters here.

Obviously I’ll be testing both latency and bandwidth, but I wanted to spend a moment talking about the synthetic latency tests.

Iometer is a tool that can simulate any combination of disk accesses you can think of. If you know how an application or OS hits the disk, iometer can simulate it. While random disk accesses are the reason that desktop/notebook hard drives feel so slow, the accesses are generally confined to particular areas of the disk. For example, when you’re writing a file the OS needs to update a table mapping the file you’re writing to the LBAs it allocated for the file. The table that contains all of the LBA mapping is most likely located far away from the file you’re writing, thus the process of writing files to the same area can look like random writes to two different groups of LBAs. But the accesses aren’t spread out across the entire drive.

In my original X25-M article I ran a 4KB random write test over the entire span of the drive. That’s a bit more ridiculous than even the toughest user will be on his/her desktop. For this article I’m limiting the random write test to an 8GB space of the drive; it makes the benchmark a little more realistic for a desktop/notebook workload.

The other thing I’ve done is increased the number of outstanding IOs from 1 to 3. I’ve found that in a multitasking user environment Vista will generally have a maximum of 3 or 4 outstanding IOs (read/write requests).

The combination of the two results in a 100% random file write of 4KB files with 3 outstanding IOs to an 8GB portion of the drive for 3 minutes. That should be enough time to get a general idea of how well these drives will perform when it comes to random file write latency in a worst case, but realistic usage scenario.

The Verdict The Return of the JMicron based SSD
POST A COMMENT

269 Comments

View All Comments

  • havemeforfree.com - Friday, February 16, 2018 - link

    This article was excellent, explaining several issues regarding performance.

    It would be great if the next article abou ssd addresses durability and reliability.

    My main concert is the swap partition (Linux) or virtual memory file (Windows). I found an post in another website saying that this is not an issue. Is it true? I find it hard to believe. Maybe in a real world test/scenario the problem will arise.
    https://havemeforfree.com/category/free-gift-cards...

    I hope AnandTech can take my concerns into consideration.

    Best regards
    Reply
  • mdavies - Friday, April 03, 2009 - link

    I'm reading this about a day late - got my Patriot PE256GS25SSDR 2.5" 256GB yesterday since I'm bad about destroying hard drives. this drive, in a word, was excruciating. I'll be replacing it with one of your recommended drives today.

    Thanks
    Reply
  • sotoa - Friday, April 03, 2009 - link

    Long time reader, first time post.
    I really liked the background story and appreciate how Anand delves deep into the the SSD's (as well as other products in other articles).

    Thanks for looking out for the little guy!
    Keep up the great work!
    Reply
  • siliq - Wednesday, April 01, 2009 - link

    With Anand's excellent article, it's clear that the sequential read/write thoroughput doesn't matter so much - all SSDs, even the notorious JMicron series, can do a good job on that metric. What is relevant to our daily use is the random write rate. Latencies and IOs/second are the most important metric in the realm of SSD.

    Based on that, I would suggest Anand (and other Tech reporters) to include a real world test of evaluating the Random Write performance for SSD. Because current real-world tests: booting windows, loading games, rendering 3D, etc. they focus on the random read. However, measuring how long it takes to install Windows, Microsoft Visual Studio, or a 4-GB PC Game would thoroughly test the Random Write / Latency performance. I think this is a good complementary of our current testing methodology
    Reply
  • Sabresiberian - Tuesday, March 31, 2009 - link

    Just wanted to add my thanks to Anand for this article in particular and for the quality work he has done over the years; I am so grateful for Anandtech's quality and information and the fact that it has been maintained! Reply
  • Sabresiberian - Tuesday, March 31, 2009 - link

    Oops didn't proof, sorry about the misspell Anand! Reply
  • hongmingc - Saturday, March 28, 2009 - link

    Anand, This is a great Article and a good story too.
    The OCZ story caught my attention that a quick firmware upgrade make a big improvement. From my understanding that SSD system designers try to trade off Space, Speed, and Durability (Also SSD :)) due the nature of NAND flash.
    We can clearly see the trade off of Space and Speed when SSD is getting more full the slower the speed (This is due to out-of-place write to increase the write operation and a block reclaim routine). However, Speed is also sacrificed to achieve the Durability (by doing wear leveling). Remember SLC nand's life time is about 100K write, while MLC nand has only about 10K write. Without considering doing wear leveling to improve the life cycle of the SSD, the firmware can be much simple and easy which will improve the write operation speed quite a bit.
    I echo you that the performance test should reflect user's daily usage which can be small size files write and may not be 80% full.
    However, users may be more concern about the Durability, the life cycle of the SSD.
    Is there such a test? How long will the black box OCZ Vertex live?
    How long will the regular OCZ Vertex live? and How long will the X25 live?
    Reply
  • antcasq - Sunday, April 05, 2009 - link

    This article was excellent, explaining several issues regarding performance.

    It would be great if the next article abou ssd addresses durability and reliability.

    My main concert is the swap partition (Linux) or virtual memory file (Windows). I found an post in another website saying that this is not an issue. Is it true? I find it hard to believe. Maybe in a real world test/scenario the problem will arise.
    http://robert.penz.name/137/no-swap-partition-jour...">http://robert.penz.name/137/no-swap-partition-jour...

    I hope AnandTech can take my concerns into consideration.

    Best regards
    Reply
  • stilz - Friday, March 27, 2009 - link

    This is the first hardware review I've read from start to finish, and the time is well worth the information you've provided.

    Thank you for your honest, professional and knowledgeable work. Also kudos to OCZ, I'll definitely consider the Vertex while making purchases.
    Reply
  • Bytales - Friday, March 27, 2009 - link

    As i read the article, i'm thinking of ways to slow down the down the degrading process. Intel is gonna ship x-25m 320gb this year. If i buy this drive and use it as an OS drive, i will obviously won't need the whole 320GB. Say i would need only 40 to 50 GB. I can make a secure erase (if the drive isn't new), made a partition of 50GB, and leave the remaining space unpartitioned. Will that solve the problem in any way ?
    Another way to solve the problem, would be a method inside the OS. The OS could use a user controlled % of the RAM memory, as a cache for those small 4kb files. Since ram reads and writes are way faster, i think it will also help. Say you got 8GB ram, and use 2gb for this purpose, and then the OS would only have 6gb ram for its use, while 2gb is used for these smaller files. That would increase also the lifespan of the SSD. Can this be possible ?
    Reply

Log in

Don't have an account? Sign up now