Anyone building a computer system should eventually pose the question: How much power does the system actually require? This is an important consideration, since it's impossible to choose an appropriate power supply without actually knowing the demands of your system. Unfortunately, many users take the easy way out: just grab a 500W power supply and call it good. If you really want to be safe, you can even grab on 800W PSU... or if you plan to run multiple graphics cards perhaps you really need a 1000W unit, right?

If people really took the time to examine system power requirements, we would see a tremendous increase in sales of 300W to 400W PSUs. The truth is that the vast majority of systems would run optimally with such a "small" power supply. Even if you're running SLI/CrossFire, you don't actually need a 750W power supply. (Of course, we recommend purchasing a good quality power supply, as there are certainly "750W" PSUs out there that can't reliably deliver anywhere near that much power.) To help dispel some myths relating to power requirements, we've put together a couple of charts.

GPU Power Consumption*
Manufacturer Idle Load
NVIDIA GeForce 9600 GT 49W 107W
NVIDIA GeForce 8800 GT 64W 115W
NVIDIA GeForce 9800 GTX 79W 116W
NVIDIA GeForce 9800 GX2 90W 179W
NVIDIA GeForce 8800 Ultra 100W 186W
ATI Radeon HD 3650 17W 32W
ATI Radeon HD 3850 53W 82W
ATI Radeon HD 3870 62W 92W
ATI Radeon HD 2900 XT 67W 104W
ATI Radeon HD 3870X2 55W 130W

* Actual power consumption for the graphics cards only. Results taken at idle on the Windows desktop and under full load running the Fur benchmark.

CPU Power Consumption**
Manufacturer Idle (EIST or CnQ Enabled) Idle Load
Intel Core 2 Duo E4500 14W 17W 36W
Intel Core 2 Duo E8500 18W 22W 43W
Intel Core 2 Quad Q9550 19W 23W 60W
Intel Core 2 Extreme QX6850 29W 32W 103W
Intel Core 2 Extreme QX9770 26W 56W 86W
AMD Athlon 64 X2 5000+ 33W 47W 89W
AMD Athlon 64 X2 6000+ 25W 74W 160W
AMD Phenom X3 8750 50W 67W 86W
AMD Phenom X4 9600 BE 29W 36W 101W
AMD Phenom X4 9850 BE 38W 53W 126W

** Actual power consumption for just the processor. Results taken at idle on the Windows desktop with either EIST/C&Q enabled or disabled, and full load generated using BOINC.

Chipset/Motherboard Power Consumption***
Platform and Chipset Load
Intel P35 (775) 37W
Intel P965 (775) 39W
Intel X38 (775) 52W
Intel X48 (775) 40W
NVIDIA 680i (775) 46W
NVIDIA 790i (775) 51W
NVIDIA 750i (775) 59W
NVIDIA 780i (775) 69W
NVIDIA 8200 (775) 29W
AMD 690G (AM2) 34W
AMD X3200 (AM2) 35W
AMD 770 (AM2) 40W
NVIDIA 570 (AM2) 40W
AMD 790FX (AM2) 42W
AMD 790X (AM2) 43W

*** Actual power consumption for the motherboard and chipset. Idle and load power do not differ by any significant amount.

Top-end graphics cards are clearly one of the most demanding components when it comes to power requirements in today's systems. Only heavily overclocked CPUs even come close to the same wattages. Note that the above chart only includes last generation cards; NVIDIA's latest GTX 280 requires even more power.

Looking at the processor side of the equation, Intel's Core 2 Duo/Quad/Extreme CPUs in general have very low power requirements. AMD's latest Phenom processors aren't far behind, however, especially in light of the fact that they include the memory controller rather than delegating the task to the chipset. We should also mention that part of the reason for the extreme power requirements on the X2 6000+ come from the use of an older 90nm process.

Naturally, motherboards also require a fair amount of power. Current motherboards average around 47W for socket 775 and 39W for socket AM2/AM2+, but features and other factors can heavily influence that number. Outside of their IGP solution, NVIDIA's chipsets tend to use more power than the competition; AMD chipsets on the other hand typically require less power. Again, numerous other aspects of any particular motherboard will impact the actual power requirements, including BIOS tuning options.

Hard drives and optical drives account for another 10 to 20W each. However, remember that hard drives are a relatively constant 10 to 15W of power draw (average is around 12W) since the platters are always spinning (i.e. idle), and movement of the drive heads during read/write operations (i.e. load) only increases power draw slightly. Optical drives on the other hand stop spinning when idle, requiring only about 5W, while during read or write operations they need around 18W.

RAM power requirements measured a constant 2W per DIMM, regardless of capacity (though clearly not including FB-DIMMs). That figure is estimated, unfortunately, as we could not measure DIMM power requirements directly; we measured power draw with two DIMMs and then again with four DIMMs to arrive at the reported figures. It's also not possible to easily separate memory power requirements from the motherboard and chipset, as they share many of the same power connections from the PSU.

Building Three Sample Systems


View All Comments

  • 7Enigma - Monday, September 22, 2008 - link

    20% greater system power? or just for the cpu? If just the CPU what did it equate to system-wise if you don't mind me asking?

    In an earlier post I mentioned a high-end PSU possibly being better than the mid-grade if you were going to moderately overclock (it was right at the overlap point under heavy load) from a sound and efficiency standpoint. But that was assuming an increase of 20-30% overall.
  • CK804 - Monday, September 22, 2008 - link

    Finally, an article from Anandtech that will really open people's eyes on how much power they actually need. Reply
  • Beenthere - Monday, September 22, 2008 - link

    When purchasing a PSU, ignoring the importance of PSU quality and output, in favor of noise and efficiency is foolhardy.

    Many PSUs do not provide clean power or the rated power - especially under heavy laod. In additional while the article touched on it, depending on the 12V rail design, many PSUs can't deliver the proper power (wattage) to the 12V rail(s) even though the PSU total wattage rating may be more than sufficient . While I'm all for green it is always better to buy a quality PSU that delivers at least 20% more power than you current needs, to provide update headroom and maintain good PSU efficiency and low noise.

    If you're not comparing PSU quality, power output per rail and warranty before considering efficiency, noise and cost, then you've missed the point of buying a proper PSU. While most folks do not need a 1000W PSU, many need a quality PSU that can deliver the correct power to each rail and a PSU that will last.
  • 7Enigma - Monday, September 22, 2008 - link

    Wouldn't a high efficiency PSU by design be a quality PSU? Generally inferior parts/design are the reason for poor efficiency... Reply
  • mindless1 - Thursday, September 25, 2008 - link

    High efficiency doesn't automatically mean high quality per it's own ratings, and an old design not attempting to have high efficiency can still be using reasonably good quality parts and design, unless all your criteria revolve around efficiency being a necessary factor before you'd call a PSU "quality".

    Take server PSU for example, many don't have such high efficiency but many are higher quality than those used in PCs.

    Do you realize that more elaborate filters will reduce efficiency? To some extent, trying to maximize efficiency limits how much quality can be present.
  • marc1000 - Monday, September 22, 2008 - link

    and it is powered by a old Pentium-D 945 (3.4ghz, 90w TDP, and it gets quite hot actually). I also have 1 HDD, 1 DVD-RW, 2GB of ddr2 ram, and one Radeon 3850 512mb.

    I was in fact using a high-quality 250W PSU, the one that came bundled with the system (I believe it is high-quality because of the build quality and the clear specs, and also because it is a system I bought from HP with "free upgrades option", so I upgraded the CPU+GPU by my own. I wanted a Core2Duo, but my mobo will not accept it.)

    whatever. the 250w PSU was working fine, even when I ran old games or 3dmark01. but on 3dmark03/05/06 and newer games, the system was turning itself off after 5 or 10 minutes. so i bought this very quiet AKASA 300w PSU with a single PEG, and now I have a relatively quiet computer that works just fine with no power problems.

    this is quite a good gaming machine, if you want to know. I am OK with 20/30 fps, as I am not a hardcore gamer. and I can play GRID at 1680x1050 with almost everything high and 2xAA at this frame rate. also Crysis run fine with everything to medium at this resolution and frame-rate (but this is not so enjoyable because it is a fast-paced FPS). I know that my CPU is the bottleneck, but maybe next year I will change the mobo+CPU.

    It is a modest PC, with a modest PSU, for a modest gamer! =)
  • Insomniac - Monday, September 22, 2008 - link

    You said the Corsair VX450W performs best of the low power usage system PSUs. But looking at the charts, it seems the Amacrox Calmer 300W is the best. Its efficiency curve is the highest through the range and its noise curve is the lowest through the range. Was this an oversight or was there a reason this PSU would not work for the midrange system?

    If it was, that seems like a great PSU. It would be close to the other mid-range PSUs in efficiency and the best for noise. It would be great for a low power system, but has quite a bit of headroom as well.
  • Christoph Katzer - Monday, September 22, 2008 - link

    Since it is passively cooled it has a very limited usability... If you run a few fans it won't be a problem but then you still have the huge price difference between both units. Reply
  • Insomniac - Monday, September 22, 2008 - link

    Thanks for the information! Reply
  • duploxxx - Monday, September 22, 2008 - link

    Very nice article it really explains the desires and needs what to buy for PSU altough i am missing some top psu's like seasonic for example.

    Only unfortunate is that some measurements of hardware are way out of range... especially in the motherboard parts.

    And if you want to be stay out of who is best... you know the always existing rival that a site has a preferred vendor, take the latest hardware from both sides, if not leave it out.

Log in

Don't have an account? Sign up now