What about Noise?

Efficiency isn't the only aspect of power supply performance to consider. Noise levels are also important. Sticking with our previous example of the Cooler Master UCP 900W, we get the following chart:

All three of our test systems allow this power supply to remain virtually silent. Even with our high-end system, power supply noise should not be much of a concern. In order to achieve a power draw of 550W, you will need to have a lot of power-hungry components, and these will almost certainly drown out any noise created by this particular power supply. Naturally, this is one of the benefits of choosing a power supply rated much higher than what you actually need: it will always stay virtually silent.

Any of our three sample systems will allow this power supply to run at less than 20 dB(A). Not surprisingly, this is the sort of comment we see on forums. "I have PSU XYZ, and I never hear it when my system is running!" That might be true, but without knowing the system components and operating load, such a statement provides the very little useful information -- especially when discussing an 800W or larger PSU. We prefer to push power supplies to their limits to see what actually happens when you begin to tax them. Midrange and high-end systems almost always have plenty of other fans that will drown out such a power supply.

Efficiency Explained PSUs for Entry-Level Systems


View All Comments

  • BernardP - Monday, September 22, 2008 - link

    The following paragraph from the article has me puzzled:

    "It's important to have one 12V rail supply the CPU with power and the second rail for the PCI-E slots and 6-pin connector. Unfortunately, many companies make a tremendous mistake when it comes to power distribution. We have seen several power supplies that use one 12V rail for the 6-pin PEG connector and then a second 12V rail for the CPU and 24-pin ATX connector. That means if you have a graphics card that doesn't include a 6-pin jack, both the CPU and GPU will use the same 12V rail for power. In this case, the second 12V rail goes completely unused, and users risk drawing too much current on the remaining 12V rail."

    I have an Antec Eartwatts 380. How can I find out if Antec has made the tremendous mistake or not? I want to make sure that the 6-pin connector and PCI-E slot are on their own 12V rail. Antec litterature on this PS says:

    "Dual 12V outputs: 12V2 for motherboard and peripherals, 12V1 for processor"

    It would seem OK, assuming "peripherals" includes the 6-pin connector.
  • 7Enigma - Monday, September 22, 2008 - link

    What is your graphics card? From the article it seems to me they are saying if you do NOT have a card that requires a 6-pin PEG connector then you could possibly have an issue. If you have a card requiring a PEG connector you don't have to worry. Reply
  • BernardP - Monday, September 22, 2008 - link

    Exactly. I am planning to add a 9500GT to my existing system (integrated graphics). No power connector on that card. Reply
  • Dribble - Monday, September 22, 2008 - link


    Seems to return sensible values, and not only does it cover pretty well every component you might come across, but it also understands overclocking, over volting, and allows you to enter a value for capacitor ageing.

    Also, here is a thread which someone has helpfully listed real power requirements (as given in reviews) for pretty well all graphic cards on the market right now:
  • drank12quartsstrohsbeer - Monday, September 22, 2008 - link

    Hey Guys: Remember that decibels is a logrithmic scale of measurement! Using a linear scale on the graph leads to inappropriate conclusions being drawn from the data. Reply
  • 7Enigma - Monday, September 22, 2008 - link

    I don't think it does. Maybe a quick *note* at the beginning of the acoustics section mentioning its logrithmic, but it is very easy to read a linear scale.

    Also, the majority of the tested systems fall well below the floor of most systems (20 decibels), so it is a moot point anyway.
  • gmkmay - Monday, September 22, 2008 - link

    I'll start off by saying good article, however I would have liked to see a few additions.

    Other than the aforementioned new cards and overclocking information I think it would have been helpful to include common watercooling pumps and case/system fans. There is most likely a large enough set reading this that would have liked to see those added.

    The problem with the power supply issue is you have to be really careful not to get something too weak...and its really easy to forget a few small items that can quickly add up (for instance 2 pumps, 8 120mm fans, etc).
  • mindless1 - Thursday, September 25, 2008 - link

    Nobody building a PC needs 8 x 120mm fans. Let's suppose you throttle down the fans enough that you might actually have good use for so many to have them all at very low RPM. That would tend to cause under 150mA per fan or barely over 1A total, a relatively trivial amount of power considering that even spinning up any one hard drive causes a larger momentary spike.

    A couple pumps shouldn't use all that much power either, but if you're pouring enough money into the system to have it that elaborate then why would you be on the fence about choosing a marginally capable PSU versus one with plenty of reserve power to the point where 3A one way or the other isn't a factor?
  • Anubis - Monday, September 22, 2008 - link

    would be interesting to see numbers on just how much power OCing pulls over a non OCed system Reply
  • Christoph Katzer - Monday, September 22, 2008 - link

    I had a QX9770 just slightly overclocked with basic bios functions (for an oc-noob like me) and already then it had an increased power draw of 20% at full load compared to normal. Reply

Log in

Don't have an account? Sign up now