What about Noise?

Efficiency isn't the only aspect of power supply performance to consider. Noise levels are also important. Sticking with our previous example of the Cooler Master UCP 900W, we get the following chart:


All three of our test systems allow this power supply to remain virtually silent. Even with our high-end system, power supply noise should not be much of a concern. In order to achieve a power draw of 550W, you will need to have a lot of power-hungry components, and these will almost certainly drown out any noise created by this particular power supply. Naturally, this is one of the benefits of choosing a power supply rated much higher than what you actually need: it will always stay virtually silent.


Any of our three sample systems will allow this power supply to run at less than 20 dB(A). Not surprisingly, this is the sort of comment we see on forums. "I have PSU XYZ, and I never hear it when my system is running!" That might be true, but without knowing the system components and operating load, such a statement provides the very little useful information -- especially when discussing an 800W or larger PSU. We prefer to push power supplies to their limits to see what actually happens when you begin to tax them. Midrange and high-end systems almost always have plenty of other fans that will drown out such a power supply.

Efficiency Explained PSUs for Entry-Level Systems
POST A COMMENT

98 Comments

View All Comments

  • LTG - Monday, September 22, 2008 - link

    You can't just look at the TDP's, that's the problem.

    When you overclock the power demands can increase in a very non-linear way.

    So for example I can't plan for one of the most popular 280 cards like the EVGA FTW 280 GTX. It's 11% core over clocked, what does that mean at the outlet? No good way to guess.

    Same for a 3.6Ghz QC CPU - this is a very common overclock, yet there is no direct way to know it's power requirements.

    I'm just saying this is not esoteric information, this would be data people really could use and can't get from the manufacturer.

    Reply
  • xaris106 - Friday, November 7, 2008 - link

    But you can. All you need is stock power consumption at load(Pstock), stock voltage(Vstock) and stock frequency(Fstock) The oc power is then:
    Poc = Pstock * (Foc/Fstock) * (Voc/Vstock)^2
    Reply
  • nubie - Monday, September 22, 2008 - link

    Unless they edited this, you are operating on a false assumption.

    (Unfortunately, our power supply testing labs didn't have the latest GPUs available for testing.)

    A power supply testing lab doesn't need to have every component on hand because it uses a test bench to load the supplies.

    Great article, way to dispel myths, I guess since I only plan to overclock with a single video card and one or two hard drives my PCPower Silencer 470 will be enough power for many years to come (which is what I hoped when I bought it, the only downside is the single 6-pin for the video card, when it can clearly handle much more.)
    Reply
  • JarredWalton - Monday, September 22, 2008 - link

    Just for the curious, AnandTech staff is scattered far and wide around the globe (well, at least the US and Europe). I'm west coast, Wes is east coast, Anand and Derek are in NC, Gary is in TX, and we have Johan and Liz in Belgium with Christoph in France. (That's not everyone, but you get the point.) Since we tend to focus on our own areas of testing, Derek and Anand have the most CPU/GPU hardware, I have laptops and displays, Gary has motherboards, etc. I can definitely say that Christoph isn't the only one without 48x0 and GTX 2x0 hardware. [Pardon me while I go cry in a corner now....] Reply
  • hyvonen - Wednesday, June 3, 2009 - link

    Oh, so in order to get this power draw info on more components, I should beg Anand? :) Reply
  • LTG - Monday, September 22, 2008 - link

    Totally understood, many companies now days are distributed and can't have every physical resource available to every person.

    However I would volunteer to send Christof a new 280 GTX to test if he decides it's worth it.

    Serious - Just please send it back whenever finished :). And I waive all claims if it is accidentally fried by that fancy Chroma thingy.

    Reply
  • ineedaname - Tuesday, November 2, 2010 - link

    This article is well written and tried to put real life numbers and situations to the test on PSUs.

    However i felt that they should mention one other thing for people who are novice to computers. They should mention that just because a PSU is rated for 500w it doesn't necessarily mean that it will do the job even if your computer will only suck about 150w max. Because a 500w psu that comes along with a $50 case just won't do the job. Not because of the wattage rating but because they use crappy parts and workmanship; it'll just die in 3 months when the warranty is over.
    Reply
  • gsuburban - Saturday, November 11, 2017 - link

    This article was written in 2008. It would be great if it were updated with the more modern CPU's and Motherboards/Chipsets. Many experts suggest most systems don't need more than 400 watts as long as the PSU is a quality make.

    This would be a great addition with more modern hardware especially now that we have SSD's and M.2 hard drives.
    Reply

Log in

Don't have an account? Sign up now