Final Words

Nehalem was a key focus at this year’s IDF, and in the coming months we should see its availability in the market. You’ll need a new motherboard and CPU, and maybe even new memory, but if you’re running well threaded applications Nehalem won’t disappoint.

Designed from the start to really tackle Intel’s weaknesses in the server market, it makes sense why the first Nehalem scheduled to launch is the high end, quad-core, dual QPI, triple-channel version. The overall architecture is very reminiscent of Barcelona, which does lend credibility to AMD’s direction with its latest core - at least in the enterprise space.

Thanks to the past few years of multi-core development on the desktop, Nehalem should see some impressive gains there as well - again from threaded applications.

The biggest changes with Nehalem are actually the ones that took place behind the scenes. The fundamental changes in design decisions requiring that each expenditure of additional power come at dramatic corresponding increase in performance, is a huge step for Intel. It’s the same design mentality used on the lowest power Intel cores (Atom), which is impressive for Intel’s highest performing Nehalem cores.

We can’t help but be excited about Nehalem as the first tock since the Core 2 processor arrived, but we do wonder what’s next. Much of the performance gains with Nehalem are due to increases in bandwidth and HT, we’ll have to wait two more years to find out what Intel can do to surprise us once more. As Pat Gelsinger told me when AMD integrated the memory controller, he said you can only do that once - what do you do to improve performance next?

While Larrabee will be the focus of Intel’s attention in 2009, Sandy Bridge in 2010 is the next tock to look forward to. Until then, Nehalem should do wonders for Intel’s competitiveness in the enterprise market, and actually be a worthy successor to Conroe on the desktop.

The only other concern I have about Nehalem is how things will play out with the two-channel DDR3 versions of the chip. They will require a different socket and as we saw in the days of Socket-940/939/754 with AMD’s K8, it can easily be a painful process. I do hope that Intel has learned from AMD’s early issues with platforms and K8, it would be a shame if initial Nehalem adopters were eventually left out in the cold. If Intel does launch an affordable 2.66GHz quad-core part, I don’t expect that the enthusiast market will be left out but I’m not much of a fortune teller.

So there you have it, a more complete look at Nehalem - the only thing we’re missing is a full performance review. Intel launches in Q4 of this year, so you know when to expect one...

Launch Speeds and Performance
Comments Locked

35 Comments

View All Comments

  • defter - Friday, August 22, 2008 - link

    Links are 20-bit wide, regardless of encoding or whether 1,2,8,16 or 20 bits are used to tranmist the data.

    I wonder who is flamebaiting here, a previous poster just mentioned the correct link width, he wasn't talking about "usable speed".
  • rbadger - Thursday, August 21, 2008 - link

    "Each QPI link is bi-directional supporting 6.4 GT/s per link. Each link is 2-bytes wide..."

    This is actually incorrect. Each link is 20 bits wide, not 16 (2 bytes). This information is on the slide posted directly below the paragraph.
  • JarredWalton - Thursday, August 21, 2008 - link

    It's 20-bits but using a standard 8/10 encoding mechanism, so of the 20 bits only 16 are used to transmit data and the other four bits are (I believe) for clock signaling and/or error correction. It's the same thing we see with SATA and HyperTransport.
  • ltcommanderdata - Thursday, August 21, 2008 - link

    Since the PCU has a firmware, I wonder if it will be updatable? It would be useful if lessons learn in the power management logic of later steppings and in Westmere can be brought back to all Nehalems through a firmware update for lower power consumption or even better performance with better Turbo mode application. Although a failed or corrupt firmware update on a CPU could be very problematic.
  • wingless - Thursday, August 21, 2008 - link

    I thought about this when I read about it the first time too. Flashing your CPU could kill the power management or the whole CPU in one fell swoop!

Log in

Don't have an account? Sign up now