The Future of Larrabee: The Many Core Era

I keep going back to this slide because it really tells us where Intel sees its architectures going:

Today we're in the era of the multi-core array. Next year, Nehalem will bring us 8-cores on a single chip and it's conceivable that we'll see 10 and 12 core versions in the two years following it. Larrabee isn't actually on this chart, it remains separate until we hit the heterogeneous multi-threaded cores (the last two items on the evolutionary path).

It looks like future Intel desktop chips will be a mixture of these large Nehalem-like cores surrounded by tons of little Larrabee-like cores. Your future CPUs will be capable of handling whatever is thrown at them, whether that is traditional single-threaded desktop applications, 3D games, physics or other highly parallelizable workloads. It also paints an interesting picture of the future - with proper OS support, all you'd need for a gaming system would be a single Larrabee, you wouldn't need a traditional x86 CPU.

This future is a long time from now, but just as Pentium M eventually evolved into the future of desktop microprocessors from Intel today, keep an eye on Larrabee, because in 5 years it could be behind what you're running everything on.

Changing the Way GPUs Are Launched?

Here's an interesting thought. By the time Larrabee rolls out in 2009/2010, Intel's 45nm process will have been able to reach maturity. It's very possible that Intel could launch Larrabee much like it does its CPUs, with many SKUs covering a broad range of market segments. Intel could decide to launch $199 all the way up to $999 Larrabee parts, instead of the more traditional single GPU launch (perhaps with two SKUs) and waiting months before the technology trickles down to the mainstream.

Intel could take the GPU industry by storm and get Larrabee out into the wild quicker if it launched top to bottom, akin to how its CPU introductions work.

Shading Tiles with Larrabee (With Extra Goodies) Things That Could Go Wrong
POST A COMMENT

102 Comments

View All Comments

  • Midwayman - Monday, August 04, 2008 - link

    I not interested in the graphics so much. It may or may not compete with the the top end nvidia chips if released on time. What is more interesting is if this can easily be integrated as a general purpose cpu for non-graphics work? Imagine getting a benefit out of your gpu 100% of the time, not just when you're gaming. I know its possible to use more modern GPU's this way if you code specifically for them, but with its x86 architecture, it might be able to do it without having apps specifically coded for it.
    Reply
  • ocyl - Monday, August 04, 2008 - link

    Larrabee will be shipped when Diablo III is, and it will mark the beginning of the end for DirectX.

    Calling it first here at AnandTech.

    Thanks go to Anand and Derek for the very well written article. You are the ones who keep tech journalism alive.
    Reply
  • erikespo - Monday, August 04, 2008 - link

    "At 143 mm^2, Intel could fit 10 Larrabee-like cores so let's double that. Now we're at 286mm^2 (still smaller than GT200 and about the size of AMD's RV770) and 20-cores. Double that once more and we've got 40-cores and have a 572mm^2 die, virtually the same size as NVIDIA's GT200 but on a 65nm process. "

    this math is way off

    143 mm^2 is 20449mm.. if they fit 10 there that is 2044.9 per core
    286mm^2 is 81796mm.. that is 4X the space so 40 cores in 286^2
    and 572mm^2 is 327184mm is 160 cores..

    double length will double area.. doubling length and width will quadruple area.
    Reply
  • bauerbrazil - Monday, August 04, 2008 - link

    Hahahaha, YOUR math is way off!!!

    Jesus.
    Reply
  • erikespo - Monday, August 04, 2008 - link

    I see where the article and you got your math..
    you both did 143mm^2 / 10 and got 14.3 then divided 286^2 by 14.3 and got 20.. this math is only acting on the one number..

    I know this because the area of 14.3 is 204.49 mm. 10 of those would be 2044.9mm. but the area of 143mm^2 is 20449mm.
    Reply
  • WeaselITB - Monday, August 04, 2008 - link

    Wow ... No.
    143mm^2 is NOT equivalent to 143^2 mm ... Your analysis is flawed.

    If we use your example, 2mm^2 is NOT 2mm x 2mm ... it's actually root(2)mm x root(2)mm ... 4mm^2 is 2mm x 2mm, not 4mm x 4mm (that'd be 16mm).

    Maybe you should examine in depth that Wikipedia article you linked earlier ...

    Thanks,
    -Weasel
    Reply
  • MamiyaOtaru - Monday, August 04, 2008 - link

    143mm^2 is NOT equivalent to 143^2 mm

    ^^THIS

    That's it in a nutshell. mm² doesn't mean you square 143, it refers to Square Millimeters, a unit of area (unlike Millimeters, a unit of distance).

    Revised mspaint illustration: http://img379.imageshack.us/my.php?image=squaremmh...">http://img379.imageshack.us/my.php?image=squaremmh...
    Reply
  • erikespo - Monday, August 04, 2008 - link

    Anandtech Comment Section.. Forever record of my retardedness Reply
  • erikespo - Monday, August 04, 2008 - link

    Dang.. Many apologies..
    got my square area and squared numbers confused..
    Reply
  • WeaselITB - Monday, August 04, 2008 - link

    [quote]4mm^2 is 2mm x 2mm, not 4mm x 4mm (that'd be 16mm).[/quote]

    Dang, that was supposed to read "(that'd be 16mm^2)."

    Thanks,
    -Weasel
    Reply

Log in

Don't have an account? Sign up now