Final Words

There's no question that NVIDIA has built a very impressive chip with the GT200. As the largest microprocessor we've ever reviewed, NVIDIA has packed an unreal amount of computational horsepower into the GT200. What's even more impressive is that we can fully expect NVIDIA to double transistor count once again in about 18 months, and once more we'll be in this position of complete awe of what can be done. We're a little over a decade away from being able to render and display images that would be nearly indistinguishable from reality, and it's going to take massive GPUs like the GT200 to get us there.

Interestingly, though, AMD has decided to make public its decision to go in the opposite direction. No more will ATI be pushing as many transistors as possible into giant packages in order to do battle with NVIDIA for the coveted "halo" product that inspires the masses to think an entire company is better because they made the fastest possible thing regardless of value. The new direction ATI will go in will be one that it kind of stumbled inadvertently into: providing midrange cards that offer as high a performance per dollar as possible.

With AMD dropping out of the high end single-GPU space (they will still compete with multiGPU solutions), NVIDIA will be left all alone with top performance for the forseable future. But as we saw from our benchmarks, that doesn't always work out quite like we would expect.

There's another very important aspect of GT200 that's worth considering: a die-shrunk, higher clocked version of GT200 will eventually compete with Intel's Larrabee GPU. The GT200 is big enough that it could easily smuggle a Penryn into your system without you noticing, which despite being hilarious also highlights a very important point: NVIDIA could easily toss a high performance general purpose sequential microprocessor on its GPUs if it wanted to. At the same time, if NVIDIA can build a 1.4 billion transistor chip that's nearly 6x the size of Penryn, so can Intel - the difference being that Intel already has the high performance, general purpose, sequential microprocessor that it could integrate alongside a highly parallel GPU workhorse. While Intel has remained relatively quiet on Larrabee as of late, NVIDIA's increased aggressiveness towards its Santa Clara neighbors is making more sense every day.

We already know that Larrabee will be built on Intel's 45nm process, but given the level of performance it will have to compete with, it wouldn't be too far fetched for Larrabee to be Intel's first 1 - 2 billion transistor microprocessor for use in a desktop machine (Nehalem is only 781M transistors).

Intel had better keep an eye on NVIDIA as the GT200 cements its leadership position in the GPU market. NVIDIA hand designed the logic that went into much of the GT200 and managed to produce it without investing in a single fab, that is a scary combination for Intel to go after. It's not to say that Intel couldn't out engineer NVIDIA here, but it's just going to be a challenging competition.

NVIDIA has entered a new realm with the GT200, producing a world class microprocessor that is powerful enough to appear on even Intel's radar. If NVIDIA had the ability to enable GPU acceleration in more applications, faster, then it would actually be able to give Intel a tough time before Larrabee. Fortunately for Intel, NVIDIA is still just getting started on moving into the compute space.

But then we have the question of whether or not you should buy one of these things. As impressive as the GT200 is, the GeForce GTX 280 is simply overpriced for the performance it delivers. It is NVIDIA's fastest single-card, single-GPU solution, but for $150 less than a GTX 280 you get a faster graphics card with NVIDIA's own GeForce 9800 GX2. The obvious downside to the GX2 over the GTX 280 is that it is a multi-GPU card and there are going to be some situations where it doesn't scale well, but overall it is a far better buy than the GTX 280.

Even looking to the comparison of four and two card SLI, the GTX 280 doesn't deliver $300 more in value today. NVIDIA's position is that in the future games will have higher compute and bandwidth requirements and that the GTX 280 will have more logevity. While that may or may not be true depending on what actually happens in the industry, we can't recommend something based on possible future performance. It just doesn't make sense to buy something today that won't give you better performance on the software that's currently available. Especially when it costs so much more than a faster solution.

The GeForce GTX 260 is a bit more reasonable. At $400 it is generally equal to if not faster than the Radeon HD 3870 X2, and with no other NVIDIA cards occupying the $400 pricepoint it is without a competitor within its own family. Unfortunately, 8800 GT SLI is much cheaper and many people already have an 8800 GT they could augment.

The availability of cheaper faster alternatives to GT200 hardware is quite dangerous for NVIDIA, as value does count for quite a lot even at the high end. And an overpriced high end card is only really attractive if it's actually the fastest thing out there.

But maybe with the lowered high end threat from AMD, NVIDIA has decided to make a gutsy move by positioning its hardware such that multiGPU solutions do have higher value than single GPU solutions. Maybe this is all just a really good way to sell more SLI motherboards.

Overclocked and 4GB of GDDR3 per Card: Tesla 10P
Comments Locked

108 Comments

View All Comments

  • skiboysteve - Tuesday, June 17, 2008 - link

    FANTASTIC write up on fine-grained TMT. I was unaware about this threading technique and was always thinking of this in class or whenever someone would talk about hyperthreading. this technique was literaly in my head for well over a year and I didn't know what it was called or that it even had a name. I always thought there had to be a more elegant way than hyperthreading to do multithreading down at the chip level without doing the OS style time slicing.

    i was sitting there wondering how the hell the schedule and run these SPs and then bam whole page about it

    really appreciate the effort that goes into researching the core of these chips. i know not everyone likes it but for guys that are educated and work in the field its really interesting
  • DerekWilson - Tuesday, June 17, 2008 - link

    remember though that this type of fine-grained TMT only has payoffs in systems running millions of threads concurrently.

    on an OS you'll see hundreds or even thousands of threads on heavily used systems, but there still wouldn't be enough concurrent action to justify this type of architecture for general purpose computing.

    of course, as developers push towards an effort to thread their code as much as possible, who knows what architectures might be worth exploring on the desktop ...
  • coder0000 - Tuesday, June 17, 2008 - link

    Very well written! A couple of points:

    1) Last week at WWDC Apple announced OpenCL as an alternative to CUDA. It's a C99 based HLL for creating compute kernels that can be deployed to GPU's and CPU's. Today Khronos officially announced a working group for this, and NV is a part of the committee. As such, your wish for an industry standardized compute language similar to CUDA that runs on all platforms and vendors HW may not be so far off.

    2) I believe your interpretation of how multiple threads simultaneously execute in an SM is incorrect. Per thread context switching is not free, and you would never be able to execute a different thread every cycle in the manner described. There is far too much context that needs to be swapped out, and there would be significant power implications for doing that, in addition to the latency. Instead, I believe what NV is claiming is that any given SP executes a single thread. All threads in the SM can all be a single warp, but you can also have multiple threads (one per SP) all executing simultaneously in an SM.
  • DerekWilson - Tuesday, June 17, 2008 - link

    1) I haven't had a good chance to look at OpenCL, but I certainly hope that if it's everything everyone is saying it is in the comments here that it takes off in a bigger way than CUDA :-)

    2) it does not context switch per thread -- warps define a context, and you have 32 threads grouped together. these threads all share the same instruction stream, which is why if threads in a warp take different directions on a branch all 32 threds must follow both paths.

    NVIDIA has flat out stated that every schedule clock a new warp is scheduled and that it takes 4 clock cycles to process one warp on an SM. For both of these to be true, we conclude that the scheduler alternates scheduling SPs and SFUs on altenating clocks which means the SPs would be scheduled every 4 clocks relative to itself.

    On 8 SPs per SM, you some how need to execute 32 threads in 4 clock cycles. This makes sense if you execute 4 threads per SP in some way. The details at this point are fuzzy though.

    regardless, if an SP executes 4 different threads from the same warp, there is no need to context switch to execute any of these threads -- again, threads in the same warp share context.
  • skiboysteve - Tuesday, June 17, 2008 - link

    could be a large explanation of the 2x register file size. and remember that the SP doesn't have to worry about the context switch, the SM handles having the data in the right place
  • anandtech02148 - Monday, June 16, 2008 - link

    From this conclusion, Amd seems to be the shrewd player, let nvidia and intel duke it out in the high voltage, heat, meaningless speed gpu while Amd can pull something like its first dualcore or athlon64 for the win.
    this new beast from Nvidia will have how many developers making games for it right away? i'm guestimating maybe 2yrs-4yrs down the road we'll see a decent title that take full advantage of this hardware.
    by then Amd will have something of a midrange that can more than handle the games.
    2 things nvidia could work on that it already has, the ps3 market, and small graphic devices to improve profits. shrink the ps3 gpu further so Sony can shrink it's machinel and sell more.

  • PrinceGaz - Monday, June 16, 2008 - link

    The GT200 core may be a technical masterpeice in terms of actually making something that big which is fully functional on GTX280 cards, but it seems to me the penalty of fabbing it at 65nm negates much of the benefits of such a wide GPU.

    They've had to drop the clock speeds throughout presumably because of the ridiculous amount of heat such a large core generates, which means the ~60% performance advantage in current games over the G80 core at similar clock-speeds is somewhat reduced.

    Given that ATI are not producing their 55nm cores in AMD's fabs but instead are getting them churned out reliably elsewhere, nVidia have made a mistake this time around in having their high-end product rely on previous-generation fabrication as it makes it run too hot to allow the clock-speeds needed for it to be the product it should be. There is always a risk in transitioning to a smaller fab technology, and nVidia suffered badly in the past by doing so too early, but with a chip the size of the GT200, they really should have gone to 55nm even if it meant a delay of a month or three, whilst the smaller cut-down derivatives were rolled out first.
  • ekpyr - Monday, June 16, 2008 - link

    Great article, but what about the microstuttering issues present in Nvidia's 9800GX2 cards (both SLI and Quad-SLI)? There is very little discussion on this, but I've seen some benchmarks where the FPS floor is 4fps with the 9800GX2s. Can you add a subjective review of whether or not the actual gameplay is smoother with the GTX280s across these games? Aggregate numbers may say one thing, but I've returned a 9800 GX2 Quad-SLI setup because it was unable to handle the incredible amount of texture loading that was done in Age of Conan (2560x1600 4xAA 'High' settings = 4fps). The 8800 GTX Tri-SLI configuration I am currently using is more resilient to microstuttering with its increased bus and memory capacities, but I'm very curious about the GTX280s and their increased memory and bus on texture-heavy games like Age of Conan.
  • DerekWilson - Monday, June 16, 2008 - link

    the only game that came close to having this issue with quad sli for us was oblivion.

    in that game at high res lag and stutter are unbearable and the game is unplayable.

    we didn't notice any stuttering issues with a single GX2.

    i'm working on some analysis tools to show details like this better in future articles.
  • TheJian - Monday, June 16, 2008 - link

    I find it humorous that nobody discusses the fact that the shrink has already taped out and will likely be out in two months or just after. This humongous chip was only released so that when AMD releases in the next few weeks they will be behind still in single GPU cards. This is basically what Intel does to AMD every time AMD has a better chip. For all intents and purposes this is a PAPER release of what will come in 2-2.5 months (In Intel's case they just show you what will be out 6 months from now, and a large portion of people don't buy an AMD because Intel might be ahead by xmas...LOL - works like a charm every time AMD is ahead). THE DIE SHRUNK CHIP! Most likely with faster speeds. I suspect they'll come with "ULTRA" version first (and stick it on top of the price heap, so as to not kill all FAT cards in the channel already) and then filter down as these big suckers leave the channel. That's if they even plan to sell more than a few of these to begin withat 65nm. It's only out there so AMD won't look any good in two weeks.

    MIND SHARE is everything, which is why Intel's KING of the paper launch when behind strategy. They've even went to doing it for all chips no matter what now. Nehalem scores 6 months before availability. AMD's marketers have no clue an should be fired. You have to play the same DIRTY game as your enemy or you've already lost. If AMD had half a brain in their head they'd paper launch an ultra or 2x4870 version for the same reason...LOL. Then claim "our 4870x2 makes nvidia look like crap for $600"...ROFL. Who cares when it's available, just say it. Having said that, Nvidia will wipe the floor with them in 2 months anyway on a 2xGTX280 that's die shrunk. Which is all they are doing today...BUYING TIME!

Log in

Don't have an account? Sign up now