Benchmarking Results

Intel Core2 Extreme QX9650 Overclocking Testbed
Processor Intel Core2 Extreme QX9650
Quad-core, 3.0GHz, 2x6MB L2 Cache, 9x Multiplier, 1333FSB
Comparison Processor Intel Core2 Extreme QX6850
Quad-core, 3.0GHz, 2x4MB L2 Cache, 9x Multiplier, 1333FSB
Motherboard Asus P5E3 Deluxe / BIOS 0703
Memory OCZ DDR3 PC3-14400 (DDR-1800) Platinum Edition
Memory Settings 7-7-7-15 (DDR-1600 ~ DDR-1700), 2N
Cooling D-tek FuZion CPU water block
EK FC8800-GTX/Ultra full coverage GPU block
ThermoChill PA120.3 radiator
Dual Laing D5 pumps in series
1/2" ID (3/4" OD) Tygon tubing
6x Yate Loon D12SL-12 120x25mm fans @ 12v
Power Supply Corsair TX650W
Video Card MSI 8800 Ultra (660/1050)
Video Driver NVIDIA ForceWare Release 169.12 (beta)
Hard Drives 2x Western Digital 150GB (RAID 0)
10K RPM SATA 3Gbps 16MB Buffer
Operating Systems Windows XP Professional SP2 (2GB)
Vista Ultimate 64-bit (4GB)

No overclocking review is complete without sharing the results of some standard benchmarking suites. The 3DMark series of benchmarks, developed and provided by Futuremark, are among the most widely used tools for benchmark reporting and comparisons. We measure Intel Core 2 Extreme QX9650 general graphics performance using 3DMark06, and because results from Windows XP and Vista are considerably different, we include both.


Core
2 Extreme QX9650 General Graphics Performance

When we compare these results to those taken with a 65nm QX6850, we see clock-for-clock gains of less than 1%. However, the 45nm QX9650 is able to reach a much higher overclock of 4.4GHz, netting us enough improvement to push above 16,000 3DMarks without even altering our graphic card's stock clocks. At these speeds 18K+ with a single overclocked 8800GTX/Ultra is entirely within the realm of possibility (a score which we were in fact able to achieve).


45nm
vs. 65nm General Graphics Performance

PCMark Vantage, Futuremark's latest system performance benchmarking suite, picks up where PCMark05 left off. Years in the making, this program offers the ability to test every conceivable aspect of total system performance either individually or all at once. Since Vantage only targets one operating system (Vista), we take advantage of the 64-bit executable included in the package running it in favor of the 32-bit file. Because Vantage (x64) is more of a complete benchmarking suite than the other tests we run, it makes sense that more than just pure CPU computing power influences results. For that reason, we have also shown the FSB settings used for each run. The additional memory bandwidth generated by the higher memory speeds does have an effect.


Core
2 Extreme QX9650 General System Performance

CINEBENCH R10 is another benchmarking program that performs radically different under both Windows XP and Vista. The developers at MAXON have done a tremendous job optimizing the code for 64-bit computing and it shows - unlike the graphics testing performed above, we find Vista maintains a clear advantage. As we can see, CINEBENCH R10 scales beautifully with additional cores and increased frequencies.


Core
2 Extreme QX9650 Rendering Performance

When placed together with results collected with a QX6850, the performance improvements offered by the QX9650 become immediately apparent. In this case, the Enhanced Core 2 processor is able to hold a commanding lead, thanks mainly to the massively improved frequency scaling.


45nm
vs. 65nm Rendering Performance

TechARP recently published a great x264 benchmark that essentially measures the time it takes a test system to encode a short, DVD-quality 720x480 progressive MPEG-2 video stream to a compressed, high-quality x264 file. Results are provided in the form of frames per second, and together with the known source file frame count it is possible to calculate the total encode time (shown below in seconds). The x264 CODEC makes very efficient use of multiple cores and is highly dependent on available processing power. As such, the benchmark makes a great choice for highlighting CPU performance. Although the CODEC does not yet include SSE4 optimizations, a new feature introduced with Penryn, the QX9650 has no problems making short work of our QX6850.


45nm
vs. 65nm General Encoding Performance

We hope to expand future testing to include real-world gaming results from some of the newest titles like Crysis, Call of Duty 4: Modern Warfare, Unreal Tournament 3, and Gears of War. Stay on the lookout for these results and others in our next look at the QX9650 when we pair this capable processor with the best motherboards companies like ASUS, Gigabyte, MSI, abit, DFI and Foxconn have to offer.

Overclock That CPU Final Thoughts
Comments Locked

56 Comments

View All Comments

  • Kougar - Thursday, December 20, 2007 - link

    This was the exact type of article I love to sit down and read through. It doesn't matter if portions of it are above my head, it just gets me to rise up another level to grab at them. Your article was a great read and I very much hope to see many more like this one in the future!

    Regarding the P5E3, I am somewhat surprised that 0.81v was the lowest you could set. Even the budget board P31-DS3L offers 0.51v as an option, my personal P35-DQ6 has 0.50v as a vCore option. I found your commentary regarding Load Line Calibration to be illuminating... this is exactly what enthusiasts like myself and others need to know.

    Lastly, I hate to ask here but Google was no help, Intel's ARK database didn't cover it, and Intel's datasheet didn't mention that I could see... what exactly is P35's process size and default vCore? The same as X38's...? As much as I love Gigabyte they are notorious for their lack of system voltage info...
  • kjboughton - Thursday, December 20, 2007 - link

    The P35 and X38 chipsets are both made using Intel's standard 90nm process technology. It's not uncommon for chipset's to lag behind current CPU offerings by a whole process generation or more. With that being said, Intel's upcoming P45 chipset, the last of it's kind (recall that all future CPU technologies will make use of an onboard memory controllers) will be made on the 65nm process -- something even the X48 won't have. In fact, this reduction in process size may have considerable benefits for P45 when it comes to the reduction in power consumption and increased performance headroom, particularlly when overclocking. The P45 default Vmch is 1.15V, X38 is slightly higer at 1.25V. Based on this I would expect to see the P45 come in around 1.05V or possibly even lower.
  • myocardia - Thursday, December 20, 2007 - link

    Kris, great article. But, when did $400-500 worth of watercooling equipment become so commonplace, as to be putting the one (or is that two?) companies who make phase-change units out of business? If freon is no longer needed for extreme CPU cooling, couldn't Vapochill just start making even more expensive, higher-end watercooling?
  • spamme33 - Thursday, December 20, 2007 - link

    I have been overclocking since my first computer build years and years ago, rarely do I learn that much from one article. Very well written, informative, and timely!
  • kilkennycat - Thursday, December 20, 2007 - link

    The documentation accompanying the BIOS settings of almost all enthusiast motherboards is frequently obscure and incomplete - probably because it is printed many months before the board/BIOS is released, plus the leading manufacturers never bother to update BIOS user-documentation when they update the BIOS. Also, it does seem that the documentation authors have a uniformly poor grasp of the English language and prefer to keep descriptions of all BIOS settings as vague and incomprehensible as possible. It is also so common to find sundry BIOS entries not documented AT ALL anywhere in the motherboard manual, even the (so-called) latest on-line version.

    So I have a request on behalf of those like myself desperately trying to understand each entry in the BIOS of that brand-new and very expensive enthusiastic motherboard that I have just purchased, with that abysmal so-called user-manual and pathetic in-BIOS "Help" Function-key :-

    Would it be possible for you or other at Anandtech to fully document/explain all the terms used in the text of the CPU and memory BIOS settings of the most popular enthusiast motherboards?
    To keep such an exercise manageable, I suggest confining the exercise initially to existing and upcoming enthusiast desktop motherboards that are fully compatible with Penryn and Phenom. At present, X48, nVidia 780i, AMD 790FX.....
  • poohbear - Thursday, December 20, 2007 - link

    thank you very much for such an informative and detailed article. very much appreciated for us overclockers and the future looks fantabulous w/ these cpus.
  • wyemarn - Thursday, December 20, 2007 - link

    Thank you very much for this great article. What a wonderful Christmas gift from Anandtech! This is one the most complete article I have ever read. CPU performance, overclocking, mobo settings, power consumption all in one article. What a joy to read.
  • akaevile - Thursday, December 20, 2007 - link

    Thank you for the detailed information. One has to be a little nervous however for the implications in what your work has found. Will Intel's improvements in refining 45nm technology push the line or has it been drawn in the sand??
  • n7 - Wednesday, December 19, 2007 - link

    Really superb article.

    Possibly the best i've ever seen on AT!

    Thanx for the indepth info!
  • Bozo Galora - Wednesday, December 19, 2007 - link

    looks like not only the X48, but three 45nm quads also will be delayed - due to AMD incompetence.
    http://www.digitimes.com/mobos/a20071218PD212.html">http://www.digitimes.com/mobos/a20071218PD212.html

Log in

Don't have an account? Sign up now