Our DX9FSAAViewer won't show us the exact sample patterns for CSAA, but we can take a look at where ATI and NVIDIA are getting their color sample points:

ATI
G70
G80
G80*

*Gamma AA disabled

As we can see, NVIDIA's 8x color sample AA modes use a much better pseudo random sample pattern rather than a combination of two rotated grid 4xAA patterns as in G70's 8xSAA.

While it is interesting to talk about the internal differences between MSAA and CSAA, the real test is pitting NVIDIA's new highest quality mode against ATI's highest quality.



G70 4X G80 16XQ ATI 6X

Hold mouse over links to see Image Quality



G70 4X G80 16XQ ATI 6X

Hold mouse over links to see Image Quality

Stacking up the best shows the power of NVIDIA's CSAA with 16 sample points and 8 color/z values looking much smoother than ATI's 6xAA. Compared to G70, both ATI and G80 look much better. Now let's take a look at the performance impact of CSAA. This graph may require a little explanation to understand, but it is quite interesting and worth looking at.

As we move from lower to higher quality AA modes, performance generally goes down. The exception is with G80's 16x mode. Its performance is only slightly lower than 8x. This is due to the fact that both modes use 4 color samples alongside more coverage samples. We can see the performance impact of having more coverage samples than color samples by looking at the performance drop from 4x to 8x on G80. There is another slight drop in performance when increasing the number of coverage samples from 8x to 16x, but it is almost nil. With the higher number of multisamples in 8xQ, algorithms that require z/stencil data per sub-pixel may look better, but 16x definitely does great job with the common edge case with much less performance impact. Enabling 16xQ shows us the performance impact of enabling more coverage samples with 8x multisamples.

It is conceivable that a CSAA mode using 32 sample points and 8 color points could be enabled to further improve coverage data at nearly the same performance impact of 16xQ (similar to the performance difference we see with 8x and 16x). Whatever the reason this wasn't done in G80, the potential is there for future revisions of the hardware to offer a 32x mode with the performance impact of 8x. Whether the quality improvement is there or not is another issue entirely.

CSAA Image Quality What's Gamma Correct AA?
POST A COMMENT

111 Comments

View All Comments

  • aweigh - Friday, November 10, 2006 - link

    You can just use the program DX Tweaker to enable Triple Buffering in any D3D game and use your VSYNC with negligable performance impact. So you can play with your VSYNC, a high-res and AA as well. :) Reply
  • aweigh - Friday, November 10, 2006 - link

    I'm gonna buy an 88 specifically to use 4x4 SuperSampling in games. Why bother with MSAA with a card like that? Reply
  • DerekWilson - Friday, November 10, 2006 - link

    Supersampling can make textures blurry -- especially very detailed textures.

    And the impact will be much greater with the use of longer more detailed pixel shaders (as the shaders must be evaluated at every sub-pixel in supersample).

    I think transparency / adaptive AA are enough.

    On your previous comment, I don't think we're to the point where we can hit triple buffering, vsync, high levels of AA AND high resolution (2560x1600) without some input lag (triple buffering plus vsync with framerates less than your refresh rate can cause problems).

    If you're talking about enabling all these options on a lower resolution lcd panel, then I can definitely see that as a good use of the hardware. And it might be interesting to look at more numbers with these type of options enabled.

    Thanks for the suggestion.
    Reply
  • aweigh - Saturday, November 11, 2006 - link

    I never knew that about SuperSampling. Is it something similar to Quincux blurring? And would using a negative LOD via RivaTuner/nHancer counteract the effect?

    How about NVIDIA's Digital Sharpness setting in Color Correction? I've found a smidge of sharpening can do wonders to improve overall clarity.

    By the way, when you said Adaptive AA, were you referring to ATI cards?
    Reply
  • Unam - Friday, November 10, 2006 - link

    Derek,

    Saw your comment regarding the rationale for the test resolution, while I understand your reasoning now, it still begs the question how many of your readers have 30" LCD flat panels?
    Reply
  • DerekWilson - Friday, November 10, 2006 - link

    There might not be many out there right now, but it's still the right test platform for G80. We did test down to 1600x1200, so people do have information if they need it.

    But it speaks to who should own an 8800 GTX right now. It doesn't make sense to spend that much money on a part if you aren't going to get anything out of it with your 1280x1024 panel.

    Owners of a 2560x1600 panel will want an 8800 GTX. Owners of an 8800 GTX will want a 2560x1600 panel. Smooth framerates with the ability to enable 4xAA in every game that allowed it is reason enough. People without a 2560x1600 panel should probably wait until prices come down on the 8800 GTX or until games that are able to push the 8800 GTX harder to buy the card.
    Reply
  • Unam - Tuesday, November 14, 2006 - link

    Derek,

    A follow up to testing resolutions, the FPS numbers we see in your articles, are they maximum, minimum or average?
    Reply
  • Unam - Friday, November 10, 2006 - link

    Who the heck runs 2560x1600? At 4XAA? Come on guys, real world benchmarks please! Reply
  • DerekWilson - Friday, November 10, 2006 - link

    we did:

    1600x1200, 1920x1440, and even 1280x1024 in Oblivion
    Reply
  • dragonsqrrl - Thursday, August 25, 2011 - link

    ....lol, owned. Reply

Log in

Don't have an account? Sign up now