TR 7000 vs. Intel: Rendering

Rendering tests, compared to others, are often a little more simple to digest and automate. All the tests put out some sort of score or time, usually in an obtainable way that makes it fairly easy to extract. These tests are some of the most strenuous in our list, due to the highly threaded nature of rendering and ray-tracing, and can draw a lot of power.

If a system is not properly configured to deal with the thermal requirements of the processor, the rendering benchmarks are where it would show most easily as the frequency drops over a sustained period of time. Most benchmarks, in this case, are re-run several times, and the key to this is having an appropriate idle/wait time between benchmarks to allow for temperatures to normalize from the last test.

Some of the notable rendering-focused benchmarks we've included for 2024 include the latest CineBench 2024 benchmark and an update to Blender 3.6 and V-Ray 5.0.2.

We are using DDR5-5200 RDIMM memory on the Ryzen Threadripper 7980X and 7970X as per JEDEC specifications. For Intel's Xeon W9-3495X, we are using DDR5-4800 RDIMM memory as per Intel's JEDEC specifications. It should be noted that both platforms are run with their full allocation of memory channels, eg, TR7000 in 4-channel and Sapphire Rapids in 8-channel.

Below are the settings we have used for each platform:

  • DDR5-5200 RDIMM - AMD Threadripper 7000
  • DDR5-4800 RDIMM - Intel Xeon Sapphire Rapids WS
  • DDR5-5600B CL46 - Intel 14th Gen
  • DDR5-5200 CL44 - Ryzen 7000

(4-1) Blender 3.6: BMW27 (CPU Only)

(4-1b) Blender 3.6: Classroom (CPU Only)

(4-1c) Blender 3.6: Fishy Cat (CPU Only)

(4-1d) Blender 3.6: Pabellon Barcelona (CPU Only)

(4-2) CineBench R23: Single Thread

(4-2b) CineBench R23: Multi Threaded

(4-3) CineBench 2024: Single Thread

(4-3b) CineBench 2024: Multi Thread

(4-5) V-Ray 5.0.2 Benchmark: CPU

(4-6) POV-Ray 3.7.1

Now we come to where the AMD Ryzen Threadripper 7000 (and Xeon W9-3495X) excel, rendering. In all of the multi-threaded rendering benchmarks, the Threadripper 7980X makes the desktop chips look fairly insignificant in comparison. Interestingly, the Threadripper 7970X ($2499) with 32C/64T performs relatively close to the Xeon W9-3495X ($5889) with 56C/112T. This shows AMD's Zen 4 core not only performs exceptionally well in rendering from a price to performance point of view compared to Intel, but the Threadripper 7980X ($4999) with 64 Zen 4 cores is very well suited to users looking to render videos and other rendering based workloads.

TR 7000 vs. Intel: Encoding TR 7000 vs. Intel: Science And Simulation
Comments Locked

66 Comments

View All Comments

  • Makaveli - Monday, November 20, 2023 - link

    So how did you not catch that the memory you were looking at was using Hynix?

    I just had to look at the specs and I knew just by the Cas latency. There was no good memory in the DDR4 range that came in at CL18.
  • meacupla - Tuesday, November 21, 2023 - link

    Well, clearly, the site that I used thought it was B-die, when it was false info for the 2x16GB model.
  • tamalero - Tuesday, December 5, 2023 - link

    I remember when samsung released low quality "b" dies. It was in the news i think in tomshardware.
    These were used as "b dies" in corsair high end ram.
    And they were not as good as the top class high binned true b die.
    Someone correct me If I am wrong.
  • 29a - Tuesday, November 21, 2023 - link

    The PCB the memory is mounted on matters too.
  • kn00tcn - Tuesday, November 21, 2023 - link

    micron m-die(?) 3600c16 working great on am4, it just wasnt available until a couple years after launch, samsung isnt the only choice

    and actually hynix had different dies, some tighter and more stable than others

    first hand anecdotal:

    1) in 2018 hynix cjr(?) 3200c16 / 2600x / msi b450m mortar = never fully stable, had to tweak low level ohms, maybe the cpu had issue, linux randomly showed amdgpu pcie timeouts in log

    2) though in 2023 the same hynix sticks work fine with 5600g / asrock deskmeet

    3) in 2020 micron 3600c16 / 3600x / asus tuf b450m = solid

    4) in 2023 different micron 3600c16 / 5600 with pbo / same msi b450m mortar from 2018, everything fine
  • demu - Tuesday, November 21, 2023 - link

    Before b-die memory I also had a G.Skill Trident set with Hynix ic:s (G.Skill 64GB (4 x 16GB) Trident Z, DDR4 3600MHz, CL17, 1.35V CL17-19-19-19).
    They also worked @3600 CL16-18-18-18 or 3733 CL17.
  • iamkyle - Monday, November 20, 2023 - link

    I see unlike previous generations of Threadripper, AMD and its board partners are abandoning the "content creator/gamer" segment.

    Great for the workstation crowd, a loss for the aforementioned.
  • Threska - Monday, November 20, 2023 - link

    The people who created Crysis could have used this. :-)
  • kn00tcn - Tuesday, November 21, 2023 - link

    and what does a content creator need tons of pcie lanes and quad+ channel memory for? regular desktop isnt weak with 16 high freq cores and 3d cache

    if workloads like rendering scale so well with cores then they also scale across multiple networked computers for a cost effective render farm instead of a single expensive threadripper

    main issue is probably the daw niche of extremely complex realtime audio synths/effects, but this has workarounds for years (prerender specific tracks), and it's not like we had better performance available in the past
  • thestryker - Monday, November 20, 2023 - link

    HEDT isn't back when the platform price of entry is more than double that of the top desktop setups. AMD did release Zen 4 TR cheaper than Intel's current closest equivalent ($1500 vs $2100), but when $1500 is the cheapest it gets CPU wise you could put together CPU/DRAM/mobo for less. This is why I've contended TR 3xxx actually marked the end of HEDT as that is when the price of entry became significantly higher than desktop.

Log in

Don't have an account? Sign up now