CPU Tests: SPEC ST Performance on P-Cores & E-Cores

SPEC2017 is a series of standardized tests used to probe the overall performance between different systems, different architectures, different microarchitectures, and setups. The code has to be compiled, and then the results can be submitted to an online database for comparison. It covers a range of integer and floating point workloads, and can be very optimized for each CPU, so it is important to check how the benchmarks are being compiled and run.

For compilers, we use LLVM both for C/C++ and Fortan tests, and for Fortran we’re using the Flang compiler. The rationale of using LLVM over GCC is better cross-platform comparisons to platforms that have only have LLVM support and future articles where we’ll investigate this aspect more. We’re not considering closed-sourced compilers such as MSVC or ICC.

clang version 10.0.0
clang version 7.0.1 (ssh://git@github.com/flang-compiler/flang-driver.git
 24bd54da5c41af04838bbe7b68f830840d47fc03)

-Ofast -fomit-frame-pointer
-march=x86-64
-mtune=core-avx2
-mfma -mavx -mavx2

Our compiler flags are straightforward, with basic –Ofast and relevant ISA switches to allow for AVX2 instructions. We decided to build our SPEC binaries on AVX2, which puts a limit on Haswell as how old we can go before the testing will fall over. This also means we don’t have AVX512 binaries, primarily because in order to get the best performance, the AVX-512 intrinsic should be packed by a proper expert, as with our AVX-512 benchmark. All of the major vendors, AMD, Intel, and Arm, all support the way in which we are testing SPEC.

To note, the requirements for the SPEC licence state that any benchmark results from SPEC have to be labeled ‘estimated’ until they are verified on the SPEC website as a meaningful representation of the expected performance. This is most often done by the big companies and OEMs to showcase performance to customers, however is quite over the top for what we do as reviewers.

For Alder Lake, we start off with a comparison of the Golden Cove cores, both in DDR5 as well as DDR4 variants. We’re pitting them as direct comparison against Rocket Lake’s Cypress Cove cores, as well as AMD’s Zen3.

SPECint2017 Rate-1 Estimated Scores

Starting off in SPECint2017, the first thing I’d say is that for single-thread workloads, it seems that DDR5 doesn’t showcase any major improvements over DDR4. The biggest increase for the Golden Cove cores are in 520.omnetpp_r at 9.2% - the workload is defined by sparse memory accessing in a parallel way, so DDR5’s doubled up channel count here is likely what’s affecting the test the most.

Comparing the DDR5 results against RKL’s WLC cores, ADL’s GLC showcases some large advantages in several workloads: 24% in perlbench, +29% in omnetpp, +21% in xalancbmk, and +26% in exchange2 – all of the workloads here are likely boosted by the new core’s larger out of order window which has grown to up to 512 instructions. Perlbench is more heavily instruction pressure biased, at least compared to other workloads in the suite, so the new 6-wide decoder also likely is a big reason we see such a large increase.

The smallest increases are in mcf, which is more pure memory latency bound, and deepsjeng and leela, the latter which is particularly branch mispredict heavy. Whilst Golden Cove improves its branch predictors, the core also had to add an additional cycle of misprediction penalty, so the relative smaller increases here make sense with that as a context.

SPECfp2017 Rate-1 Estimated Scores

In the FP suite, the DDR5 results have a few larger outliers compared to the DDR4 set, bwaves and fotonik3d showcase +15% and +17% just due to the memory change, which is no surprise given both workloads extremely heavy memory bandwidth characteristic.

Compared to RKL, ADL showcases also some very large gains in some of the workloads, +33% in cactuBBSN, +24% in povray. The latter is a surprise to me as it should be a more execution-bound workload, so maybe the new added FADD units of the cores are coming into play here.

We’ve had not too much time to test out the Gracemont cores in isolation, but we are able to showcase some results. This set here is done on native Linux rather than WSL due to affinity issues on Windows, the results are within margin of error between the platforms, however there are a few % points outliers on the FP suite. Still, comparing the P to E-cores are in apples-to-apples conditions in these set of graphs:

SPECint2017 Rate-1 Estimated Scores (P vs E-cores) SPECfp2017 Rate-1 Estimated Scores (P vs E-cores)

When Intel mentioned that the Gracemont E-cores of Alder Lake were matching the ST performance of the original Skylake, Intel was very much correct in that description. Unlike what we consider “little” cores in a normal big.LITTLE setup, the E-cores of Alder Lake are still quite performant.

In the aggregate scores, an E-core is roughly 54-64% of a P-core, however this percentage can go as high as 65-73%. Given the die size differences between the two microarchitectures, and the fact that in multi-threaded scenarios the P-cores would normally have to clock down anyway because of power limits, it’s pretty evident how Intel’s setup with efficiency and density cores allows for much higher performance within a given die size and power envelope.

In SPEC, in terms of package power, the P-cores averaged 25.3W in the integer suite and 29.2W in the FP suite, in contrast to respectively 10.7W and 11.5W for the E-cores, both under single-threaded scenarios. Idle package power ran in at 1.9W.

SPEC2017 Rate-1 Estimated Total

Alder Lake and the Golden Cove cores are able to reclaim the single-threaded performance crown from AMD and Apple. The increases over Rocket Lake come in at +18-20%, and Intel’s advantage over AMD is now at 6.4% and 16.1% depending on the suite, maybe closer than what Intel would have liked given V-cache variants of Zen3 are just a few months away.

Again, the E-core performance of ADL is impressive, while not extraordinary ahead in the FP suite, they can match the performance of some middle-stack Zen2 CPUs from only a couple of years ago in the integer suite.

CPU Tests: Core-to-Core and Cache Latency, DDR4 vs DDR5 MLP CPU Tests: SPEC MT Performance - DDR5 Advantage
Comments Locked

474 Comments

View All Comments

  • xhris4747 - Tuesday, November 9, 2021 - link

    They should use pbo it's fair to
  • xhris4747 - Tuesday, November 9, 2021 - link

    Is you using pbo some people are t using pbo which I think isn't fair because that i9 is oc to snot
  • EnglishMike - Thursday, November 4, 2021 - link

    It's not just the gaming world -- it's the entire world except for long-running CPU intensive tasks. Handbrake and blender are valuable benchmarking tools for seeing what a CPU is capable of when pushed to the limit, but the vast majority of users -- even most power users -- don't do that.

    Sure, Intel has more work to do to improve power efficiency in long running CPU intensive workloads, but taking the worst case power usage scenarios distorts the picture as much as you're claiming the reviewers are doing.
  • Wrs - Thursday, November 4, 2021 - link

    Can't calculate efficiency without scores. Also, well known that power scales much faster than performance. The proper way to compare efficiency is really at constant work rate or constant power.
  • blanarahul - Thursday, November 4, 2021 - link

    Sorry sir I can't. You haven't provided me the data for how much time each test took! Would you be so kind as to do that?
  • Netmsm - Thursday, November 4, 2021 - link

    Sorry, this is a direct link to Tom's bench:
    https://cdn.mos.cms.futurecdn.net/if3Lox9ZJBRxjbhr...
    this is for "blender bmw27" in which both 12900k and 5950x finish the job around 80 seconds BUT 12900k sucks power for about 70 percent more than 5950x.

    you can find other benches here:
    https://www.tomshardware.com/news/intel-core-i9-12...

    I'm wondering why Ian hasn't put 12900k nominal TDP in results just like all other CPU's! When 10900k was released with nominal TDP of 125, Ian put than number in every bench while in reality 10900k was consuming up to 254 (according to the Ian's review)! When I asked him to put real numbers of power consumption for every test he said I can't because of time and because I've too much to do and because I've no money to pay and delegate such works to an assistant!
    But now we have 12900k with nominal TDP of 241 which seems unpleasant to Ian to put it in front of it in results.
  • Zingam - Friday, November 5, 2021 - link

    Last gen game. How about glquake?

    1 billion computing devices and just a few million game units sold? What does it mean? Gamers are a tiny but vocal minority.
    If they bring this performance at 5W on low and 45W on high then its good for majority of people. This is just a space heater.
  • Gothmoth - Friday, November 5, 2021 - link

    so throwing more cores on a game that can´t make use of them is usless thanks for clarifing that.... genius!!

    when a 5600x is producing 144 FPS and a 5950x is producing 150 FPS the 5600x is the clear winner when it comes to efficency.

    now try to cool the 12900K in a work environment with an air cooler.
    i can cool my threadripper with a noctua aircooler and let it run under full load for ours.

    i am really curious to see how the 12900k will handle that.

    i am not an amd fanboy. i was using anti-consumer intel for a decade before switching to ryzen.
    i would us intel again when it makes sense for me (i need my pc for work not gaming).

    but with this power draw it does not make sense.
  • Wrs - Saturday, November 6, 2021 - link

    The 12900k is fine with a Noctua D15 in a work environment. Doesn't matter if you're hammering it at 95C the whole time, the D15 doesn't get louder. But it's no megachip like a Threadripper. For that on the Intel side you'd wait for Sapphire Rapids or put up with an existing Xeon Gold with 8-32 Ice Lake cores at 10nm.
  • Netmsm - Saturday, November 6, 2021 - link

    How would it be justified to buy Xeon Gold in place of Threadripper and Epyc?!

Log in

Don't have an account? Sign up now