CPU MT Performance: A Real Monster

What’s more interesting than ST performance, is MT performance. With 8 performance cores and 2 efficiency cores, this is now the largest iteration of Apple Silicon we’ve seen.

As a prelude into the scores, I wanted to remark some things on the previous smaller M1 chip. The 4+4 setup on the M1 actually resulted that a significant chunk of the MT performance being enabled by the E-cores, with the SPECint score in particular seeing a +33% performance boost versus just the 4 P-cores of the system. Because the new M1 Pro and Max have 2 less E-cores, just assuming linear scaling, the theoretical peak of the M1 Pro/Max should be +62% over the M1. Of course, the new chips should behave better than linear, due to the better memory subsystem.

In the detailed scores I’m showcasing the full 8+2 scores of the new chips, and later we’ll talk about the 8 P scores in context. I hadn’t run the MT scores of the new Fortran compiler set on the M1 and some numbers will be missing from the charts because of that reason.

SPECint2017 Rate-N Estimated Scores

Looking at the data – there’s very evident changes to Apple’s performance positioning with the new 10-core CPU. Although, yes, Apple does have 2 additional cores versus the 8-core 11980HK or the 5980HS, the performance advantages of Apple’s silicon is far ahead of either competitor in most workloads. Again, to reiterate, we’re comparing the M1 Max against Intel’s best of the best, and also nearly AMD’s best (The 5980HX has a 45W TDP).

The one workload standing out to me the most was 502.gcc_r, where the M1 Max nearly doubles the M1 score, and lands in +69% ahead of the 11980HK. We’re seeing similar mind-boggling performance deltas in other workloads, memory bound tests such as mcf and omnetpp are evidently in Apple’s forte. A few of the workloads, mostly more core-bound or L2 resident, have less advantages, or sometimes even fall behind AMD’s CPUs.

SPECfp2017 Rate-N Estimated Scores

The fp2017 suite has more workloads that are more memory-bound, and it’s here where the M1 Max is absolutely absurd. The workloads that put the most memory pressure and stress the DRAM the most, such as 503.bwaves, 519.lbm, 549.fotonik3d and 554.roms, have all multiple factors of performance advantages compared to the best Intel and AMD have to offer.

The performance differences here are just insane, and really showcase just how far ahead Apple’s memory subsystem is in its ability to allow the CPUs to scale to such degree in memory-bound workloads.

Even workloads which are more execution bound, such as 511.porvray or 538.imagick, are – albeit not as dramatically, still very much clearly in favour of the M1 Max, achieving significantly better performance at drastically lower power.

We noted how the M1 Max CPUs are not able to fully take advantage of the DRAM bandwidth of the chip, and as of writing we didn’t measure the M1 Pro, but imagine that design not to score much lower than the M1 Max here. We can’t help but ask ourselves how much better the CPUs would score if the cluster and fabric would allow them to fully utilise the memory.

SPEC2017 Rate-N Estimated Total

In the aggregate scores – there’s two sides. On the SPECint work suite, the M1 Max lies +37% ahead of the best competition, it’s a very clear win here and given the power levels and TDPs, the performance per watt advantages is clear. The M1 Max is also able to outperform desktop chips such as the 11900K, or AMD’s 5800X.

In the SPECfp suite, the M1 Max is in its own category of silicon with no comparison in the market. It completely demolishes any laptop contender, showcasing 2.2x performance of the second-best laptop chip. The M1 Max even manages to outperform the 16-core 5950X – a chip whose package power is at 142W, with rest of system even quite above that. It’s an absolutely absurd comparison and a situation we haven’t seen the likes of.

We also ran the chip with just the 8 performance cores active, as expected, the scores are a little lower at -7-9%, the 2 E-cores here represent a much smaller percentage of the total MT performance than on the M1.

Apple’s stark advantage in specific workloads here do make us ask the question how this translates into application and use-cases. We’ve never seen such a design before, so it’s not exactly clear where things would land, but I think Apple has been rather clear that their focus with these designs is catering to the content creation crowd, the power users who use the large productivity applications, be it in video editing, audio mastering, or code compiling. These are all areas where the microarchitectural characteristics of the M1 Pro/Max would shine and are likely vastly outperform any other system out there.

CPU ST Performance: Not Much Change from M1 GPU Performance: 2-4x For Productivity, Mixed Gaming
Comments Locked

493 Comments

View All Comments

  • darwinosx - Friday, November 5, 2021 - link

    Everything you said is wrong.
  • C@illou - Tuesday, October 26, 2021 - link

    Slight correction, Vulkan works great on windows (and also works on Linux, but that counts the same as "SteamOS"), that makes it the most compatible API.
  • xeridea - Tuesday, October 26, 2021 - link

    Vulkan runs on everything.
  • Qozmo - Tuesday, October 26, 2021 - link

    Worth mentioning that MoltenVK exists officially from Khronos Group which layers Vulcan on top of the MetalAPI enabling Vulcan apps to run on MacOS/iOS
  • Wrs - Monday, October 25, 2021 - link

    Is it just me or does that make no economic sense? When I’m AAA gaming (flashy visuals, complex scenes, high fps) I don’t feel as if I’m looking for light and cool or portable. I’d be on a desk flinging a mouse, or wielding a controller in front of a TV.
  • michael2k - Monday, October 25, 2021 - link

    Maybe it isn't clear, but 'light and cool' means there is lots of headroom for overclocking. From the third page:
    Power Behaviour: No Real TDP, but Wide Range
    Apple doesn’t advertise any TDP for the chips of the devices – it’s our understanding that simply doesn’t exist, and the only limitation to the power draw of the chips and laptops are simply thermals. As long as temperature is kept in check, the silicon will not throttle or not limit itself in terms of power draw.

    You can imagine that in a desktop, with far better cooling and far more available power, that the M1P/M1M might grow well beyond the 92W of observed package power. The Mac Pro with 28 cores and 2 GPUs today will allow the CPU to consume 902W, there is a lot of space for performance to grow!

    So imagine 10x more performance from a desktop Mac with 10 M1P in some kind of fabric (100 cores and 320 GPUs!) or a much smaller number of M1P, maybe 4 (40 cores and 128 GPUs) with each allowed to consume 2.5x as much power
  • sean8102 - Tuesday, October 26, 2021 - link

    Problem is developer support. It seems there are only 2 "AAA" macOS AND ARM native games.

    https://www.applegamingwiki.com/wiki/M1_native_com...

    That has to improve A LOT for getting a ARM Mac for gaming to make any sense. Otherwise you're always taking the performance hit of Rosetta 2. Plus not many AAA games are releasing for macOS since they announced the switch to ARM.

    The chips are amazing in terms of performance and efficiency, but getting a mac esp a ARM based one for gaming wouldn't make much sense. At least for now and not unless developer support improves A LOT.
  • AshlayW - Tuesday, October 26, 2021 - link

    Clock speeds do not scale with power consumption and Firestorm cores are not designed to reach high clock speeds, these cores would likely not break 3.5 if overclocked (wide, dense design for perf/W). AMD / Intel / NVIDIA's 5nm-class processors will put Apple back in its place for people wanting to NOT be locked into a walled garden from a company adamant on crushing consumer rights. It's just a shame that Apple's silicon engineers are so freakin' good, they're working for the wrong company (and hurting human progress by putting the best wafers/chips in Apple products).
  • valuearb - Tuesday, October 26, 2021 - link

    Lol apple is responsible for more human progress than all the other PC makers combined.
  • MooseNSquirrel - Friday, October 29, 2021 - link

    Only if your metric is marketing based.

Log in

Don't have an account? Sign up now