Conclusion & End Remarks

Today’s investigation into the new A15 is just scratching the tip of the iceberg of what Apple has to offer in the new generation iPhone 13 series devices. As we’re still working on the full device review, we got a good glimpse of what the new silicon is able to achieve, and what to expect from the new devices in terms of performance.

On the CPU side of things, Apple’s initial vague presentation of the new A15 improvements could either have resulted in disappointment, or simply a more hidden shift towards power efficiency rather than pure performance. In our extensive testing, we’re elated to see that it was actually mostly an efficiency focus this year, with the new performance cores showcasing adequate performance improvements, while at the same time reducing power consumption, as well as significantly improving energy efficiency.

The efficiency cores of the A15 have also seen massive gains, this time around with Apple mostly investing them back into performance, with the new cores showcasing +23-28% absolute performance improvements, something that isn’t easily identified by popular benchmarking. This large performance increase further helps the SoC improve energy efficiency, and our initial battery life figures of the new 13 series showcase that the chip has a very large part into the vastly longer longevity of the new devices.

In the GPU side, Apple’s peak performance improvements are off the charts, with a combination of a new larger GPU, new architecture, and the larger system cache that helps both performance as well as efficiency.

Apple’s iPhone component design seems to be limiting the SoC from achieving even better results, especially the newer Pro models, however even with that being said and done, Apple remains far above the competition in terms of performance and efficiency.

Overall, while the A15 isn’t the brute force iteration we’ve become used to from Apple in recent years, it very much comes with substantial generational gains that allow it to be a notably better SoC than the A14. In the end, it seems like Apple’s SoC team has executed well after all.

GPU Performance - Great GPU, So-So Thermals Designs
Comments Locked

204 Comments

View All Comments

  • BillBear - Wednesday, October 6, 2021 - link

    You realize the sustained performance numbers are right there in the article, right?

    Samsung's flagship getting half the sustained performance is a poor showing for Apple?
  • Ppietra - Monday, October 4, 2021 - link

    So, can conclude that these performance cores are actually new cores?
    Or did they obtain the increased efficiency through other means, like bigger cache, improved manufacturing and better voltage gating?
  • Andrei Frumusanu - Monday, October 4, 2021 - link

    They are new, yes.
  • Ppietra - Monday, October 4, 2021 - link

    thanks!
    It is a big increase in efficiency, though it would seem performance cores IPC doesn’t increase much! 5% maybe?
    for a second I actually thought that the SPEC CPU 2017 scores were comparing Apple’s performance cores with the snapdragon!!!! That is impressive performance from the efficiency cores.
  • name99 - Monday, October 4, 2021 - link

    "New core" is a somewhat meaningless term :-(
    That is it can mean whatever you want it to mean.

    As far as we can tell right now, this is like an "Intel-level new core" (ie the sort of changes we have seen from one Cove to the next), so possibly some changes in the number/size of units.
    (Andrei mentioned 4 rather than 3 integer units for the E core) but probably no serious change in the algorithms used by the design.

    It is possible that some chicken bits were switched off so that functionality that was designed into the A14 but disabled (ie it failed in some unusual circumstances!) is now working. For example, as far as I could tell, none of the three Zero Cycle Load accelerators described in various patents were working in the M1, but it would be nice if we see them active in these P and E cores.

    This is the sort of thing that is much easier to investigate on macs than on phones, so we need to wait for new Macs (and then time to investigate carefully) before we can be sure.

    Another way you can ask the question is: is there new functionality here? And the answer to that appears to be yes, for example some hypervisor improvements and (apparently) larger physical address. But these CORE-SPECIFIC (as opposed to general SoC) improvements are small and not very visible.
  • Ppietra - Monday, October 4, 2021 - link

    New core as in something that is actually changed in a meaningful way, and not just an overclocked version of an A14 core.
    New functionality is a meaningful change, even if it’s small in importance. Higher efficiency would also be a meaningful change, though it’s not easy to know how much of it is a result of an improved core.
  • misan - Monday, October 4, 2021 - link

    In that sense, yes, it’s a new core. The caches have been increased, it is now more power-efficient and there are additional new features as mentioned above.
  • Ppietra - Tuesday, October 5, 2021 - link

    L2 and SMC sizes are not technically part of the core design. And like I said power efficiency can increase by many different factors, it isn’t an absolute proof.
  • cha0z_ - Monday, October 4, 2021 - link

    I know you kinda inclined in the article given the PCB design, but still - won't we see better sustained performance in the bigger 13 pro max model? Maybe even apple on purpose allow higher sustain power consumption vs the smaller pro model?
  • cha0z_ - Monday, October 4, 2021 - link

    talking especially about the GPU, because basically 90% of the people who are serious about gaming on their phone will get 13 pro max instead of the regular 13 pro for both the bigger display and the far better battery life.

Log in

Don't have an account? Sign up now