Motherboards

All of these new processors are LGA1200 processors, and a result they will be enabled in 500-series motherboards. There is also some 400-series support, however it depends on the platform. Here’s the trusty AnandTech Guide for support:

Motherboard Support
AnandTech B460
H410
Z490
Q470
H470
Z590
B560
H510
Comet Lake Yes Yes Yes
Rocket Lake No Yes Yes

The reason why Rocket Lake will not work in H410 or B460 motherboards is because these chipsets are built on Intel’s older 22nm process. There is something in the design of those chipsets, likely to be related to signal integrity, which means they cannot be supported, at least at the PCIe 3.0 speeds required. Given previous motherboard firmware, we might see unofficial support later down the line, even if only in PCIe 2.0 mode.

However, the lead platform for Rocket Lake will be the Z590 platform. The new features boil down to:

  • Double CPU-to-Chipset bandwidth when paired with 11th Gen RKL
  • USB 3.2 Gen 2x2 (20 Gbps) native chipset connectivity

The new H570 and B560 motherboards reintroduce memory overclocking, a feature that was removed from the 400-series budget motherboards.

Here is the slide Intel provided for 500-series, though it is worth mentioning some of the caveats:

In this slide, it states that discrete Wi-Fi, 2.5 gigabit Ethernet, and Thunderbolt 4 are supported on 500 series. These are optional upgrades for the motherboard vendors, so not all motherboards will have them, and in each case they also require additional hardware costs for the motherboard manufacturer, such as an RF module for Wi-Fi, a PHY for Ethernet, or a PHY for Thunderbolt. These could all be added to any other motherboard, AMD or Intel, with discrete controllers which are slightly more expensive – those controllers don’t have to be Intel either. But to be clear, they are not unique to offerings to Z590, nor are they natively offered by default on all systems.

All of the 10th Generation Comet Lake processors will work in all 500-series motherboards, and get all the features, except the double CPU-to-Chipset bandwidth, as that specifically requires Z590 + 11th Gen Core CPU.

It should be noted that anyone already with a 400-series or 500-series motherboard, or those looking to purchase one, will need a BIOS update in order to enable the latest performance enhancements. In our testing, we found that the BIOS on our boards when they arrived in our offices were quite old (from January), and the latest microcode from Intel should help increase performance and cache latency. Some may be updated to February microcode, which does get most of the way there to peak performance, but the latest should always give the best results.

Intel Z590 and B560

The two main chipsets to focus on for Rocket Lake are the Z590 and B560 motherboards. The Z590 start at an eye-watering $175 and go up to over $1000, whereas the B560 are more palatable starting from $75 up to around $220.

Where the B560 and Z590 differ is in some of the PCIe bifurcation (x16 only on B560), the number of USB ports, and the chipset number of PCIe 3.0 lanes available for M.2 or additional controllers.

Intel 500-Series Chipset
Feature B560 Z590 Z490
Socket LGA1200 LGA1200 LGA1200
PCIe Lanes (CPU) 20 20 16
PCIe Specification (CPU) 4.0 4.0 3.0*
PCIe Config x16
x16/+4
x16
x8/x8
x8/x8/x4+4
x16
x8/x8
x8/x8/+4
DMI Lanes (3.0) x4 x8 (RKL)
x4 (CML)
x4
Chipset PCIe 3.0 Lanes 12 24 24
Max USB 3.2 (Gen2/Gen1) 4/6 6/10 6/10
USB 3.2 Gen 2x2 (20 Gbps) Y Y ASMedia
Total USB 12 14 14
Max SATA Ports 6 6 6
Memory Channels (Dual) 2/2 2/2 2/2
Intel Optane Memory Support Y Y Y
Intel Rapid Storage Technology (RST) Y Y Y
Integrated WiFi MAC Wi-Fi 6 Wi-Fi 6 Wi-Fi 6
Intel Smart Sound Y Y Y
Overclocking Support *Memory Y Y
Intel vPro N N N
Max HSIO Lanes ? ? 30
ME Firmware 15 15 14
TDP (W) 6 6 6

We’ve gone through all 90+ motherboards from both chipsets, and collated them into two large overviews:

These are all the details on all the motherboards we’ve been able to identify as coming to market. Note that not all will be available in every region, with some being OEM/customer specific and might only be available on the OEM market.

By and large, we have observed several key metrics worth discussing with the new motherboards.

First is the large uptake of 2.5 gigabit Ethernet. It has taken literal years since the first consumer 2.5 GbE solutions came to market with Aquantia, and they were limited to select motherboards at a premium price point. Now we are seeing Intel and Realtek-based 2.5 GbE controllers make their way down to something more affordable. More and more NAS and routers are coming with one or more 2.5 GbE ports as standard, and as more systems get enabled with higher speed for wired connectivity, we should see the market open up a lot more. It won’t improve your internet speed, but it might improve home streaming with the right network configuration.

The other element these boards bring is USB 3.2 Gen 2x2 (20 Gbps). This is the double speed ‘USB 3.2’ standard that was renamed, and now we get this feature native on 500-series chipsets. It was only previously possible with additional ASMedia controllers, but now Intel motherboards can have them, but only if the motherboard vendor enables it. We’re seeing mostly front-panel connections adhere to this standard, but a few motherboards have it available as a Type-C connection on the rear panel.

Also of note is that the B560 motherboards are now enabling memory overclocking again, which was removed in B460. Any 10th Gen or 11th Gen processor in a B560 can have overclocked memory. CPU overclocking is still limited to the Z-series motherboards.

Overclocking Enhancements For Memory: Ratios

On the Overclocking Enhancement side of things, this is perhaps where it gets a bit nuanced. For a while now Intel has been binning its K processors to within an inch of their maximum supported frequencies, and turbo boost techniques like favored core and Thermal Velocity Boost also push the margins on the cores that support it. So what can Intel focus on for overclocking this time round?

With Rocket Lake, Intel is leaning into the memory side of things. These new Rocket Lake processors now support geared ratios between the memory controller and the DRAM data rates. Users can either select a 1:1 ratio or a 2:1 ratio.

Traditionally Intel has natively operated on a 1:1 ratio without ever giving users the option. This meant that in order to push that DDR4-5000 memory, like we did in our review of that premium Corsair kit, it required a processor with a good memory controller that could also support a 5.0 GT/s connection.

With the 2:1 ratio, the memory controller will now operate at half speed, in a more comfortable zone, allowing memory overclockers to go beyond traditional limits. With that DDR4-5000 memory, it means that the memory controller is now only operating at 2.5 GT/s (1250 MHz because DDR4 is measured in transfers per second, and there are two transfers per clock in Double Data Rate DDR memory). This also means that in order to match the internal clocks on DDR4-3200, users will have to start pushing the memory itself to DDR4-6400 to get the memory controller back on a level footing when in that 2:1 ratio. Nevertheless, this feature does allow the memory to be tested to its limits without the bottleneck of the CPU.

By default, all Rocket Lake processors will support DDR4-2933 at a 1:1 ratio in the specifications. Above this will mean a 2:1 ratio, except for the Core i9 family, which allows for a DDR4-3200 1:1 ratio. Despite these specifications, every motherboard we tested puts DDR4-3200 on a 1:1 ratio for all CPUs, so the delineation between the Core i9 and the rest seems arbitrary.

Overclocking Enhancements For Memory: Dual POST

Users that have tried memory overclocking will note that in order to change the memory ratio, it requires a restart. With the new Z590 system, Intel has devised a system that will let a user select two different memory ratios, and it will enable both at boot time.

Under this mode, once in the operating system, a user can switch between them for different benchmarking modes. What this does is allow extreme overclockers, particularly those going for world records with sub-zero coolants, to boot at the lower memory speed, then run the test at a higher memory speed, then instantly revert back to the slow speed. Currently they have to run at the high speed all the time, which can be liable to instability. It’s more one for the extreme overclockers, but Intel has added it here.

Other Overclocking Enhancements

Other new features in the overclocking toolkit include AVX-512 offsets and voltage guard bands, enabling users to overclock the processors without overclocking AVX-512 and incurring a heavy power consumption penalty. Intel has also put in an option to disable AVX altogether, which means that users who don’t want to worry about AVX-512 draining almost 300 W from an errantly loaded program, it can be disabled directly in the firmware.

Intel is also continuing support for a number of overclock-related features, such as per-core HyperThreading, per-core frequency adjustment, and fine-grained PLL controls. Intel has stated that with Rocket Lake, it has opened up some of the features to enable proper BCLK overclocking again, however we wait to see if there is a good range for overclockers to play with.

All these new features are enabled when a 500-series motherboard and a new Rocket Lake 11th Generation Core processor. Support with Comet Lake will be limited.

A Rocket Lake Retrofit: 10nm onto 14nm Intel’s New Adaptive Boost Technology for Core i9-K/KF
Comments Locked

279 Comments

View All Comments

  • macakr - Tuesday, March 30, 2021 - link

    really? that bad? I can get that on a 15w Ryzen 4700u!
  • Slash3 - Tuesday, March 30, 2021 - link

    The 4700u mobile APU has a much stronger iGPU core, similar to that of Rocket Lake.
  • Alistair - Wednesday, March 31, 2021 - link

    Yeah it is that bad. Generally if you keep the resolution at 900p or 720p (or 50 percent scaling of 1080p, which is ~768p) the performance is ok. But it falls off dramatically at 1080p. No linear scaling here. Basically it is MUCH worse than laptop parts. I have DDR3600C16 so was expecting better. Oh well.

    Runeterra was barely playable at 1440p, just a basic card game, but the FPS shoots up dramatically at 1080p or lower, so that's fine. Would be nice to play Hearthstone and Runeterra with integrated graphics one day...
  • Tom Sunday - Thursday, April 8, 2021 - link

    I am getting on the years and like to finally replacing my 13-year old Dell XPS 730x. Its time after being forced to replacing (3-times) PSU's, Motherboards, AIOs, GPU's and RAM. The new Intel i5 11600K holds interest. Will the 'integrated graphics' be good enough for just browsing the Net and watching old western or war movies on utube and with not doing any gaming? How good is the IGPU in this regard? Once I have more money I can hopefully buy a used discrete GPU 'over the table' next year at the local computer show? Will probably have my new system cobbled together by the local stripcenter PC shop and by one of the Bangladesh boys. So it will be good to sound somewhat intelligent discussing the hardware and not being pushed into what is cheap and in stock that day. Thoughts?
  • Spunjji - Friday, April 9, 2021 - link

    The iGPU on Rocket Lake will be fine for those purposes. However, so would the iGPU on the cheaper Comet Lake processors out there - they may be a better (cheap) option if you're going to buy now and upgrade later.

    Another option would be to go for a system based around the AMD Ryzen 5 3600 and re-use an existing GPU, which would also give you the option to upgrade the CPU again to something like a 5800X or even 5900X later. Personally, I'd go with that approach.
  • 0ldman79 - Friday, April 16, 2021 - link

    The integrated GPU is fine for movies and web.

    I've got a Skylake laptop with GTX 960M, it uses the iGPU until I fire up a game.

    The h264 and h265 playback are accelerated through the iGPU, barely draws any power at all for video playback. The screen draws all the power. It'll play back 1080P 60 h264 or h265 all day long at under 2W. There are no issues using it for the web or anything else using integrated, it'll even play some games at lower settings, roughly 1/4 of a 750 Ti (960M) in gaming, though the newer chips will be slightly better.
  • Alexvrb - Tuesday, March 30, 2021 - link

    Vega 11 is actually a bit slower than the latest 8 CU Vega found in Renoir/Cezanne. Not enough to catch up to Iris Xe, I don't think... but impressive given the smaller GPU and same power (or better). That's still GCN, too. If they release an APU with a ~10 CU RDNA2 GPU, it should give them a substantial boost... as long as bandwidth doesn't cripple it. Next gen memory should help, but they might also integrate a chunk of Infinity Cache. It has proven effective on larger RDNA2 siblings, giving them good performance with a relatively narrow memory bus.
  • Oxford Guy - Wednesday, March 31, 2021 - link

    Good ole iGPU distraction.

    How about the most important stuff? How about having it appear on the first page?

    • performance per watt

    • performance per decibel

    Apples-to-apples comparison, which means the same CPU cooler in the same case for Intel and AMD.

    That is important, not this obsession over a pointless sort-of GPU.
  • Jezwinni - Saturday, April 3, 2021 - link

    I agree the iGPU is a distraction, but disagree on what declare the important things.

    Personally the performance for the price is the important thing.

    Any extra power draw isn't going to blow up my PSU, make my electricity bills unmanageable, or save the world.

    Why you consider the performance per watt most important?
  • 0ldman79 - Friday, April 16, 2021 - link

    Performance per watt on iGPU only matters in mobile devices, even then it's barely measurable.

    The iGPU is only going to pull 10W max, normally they peak around half that.

Log in

Don't have an account? Sign up now