Just last week, we saw the first tests of Intel's newest Xeon processor formerly codenamed Irwindale. The major improvement Irwindale offers over Nocona is an extra 1MB of L2 cache. Our dual processor server configuration showed the 2MB cache of the Irwindale based Xeon offering a significant improvement under certain workloads. In a shared front side bus dual processor configuration, the improved cache hit rate of the 2MB Xeon helps to keep the NetBurst architecture from getting tangled up in the length of its pipeline when working with lots of data. As an added bonus, the impact of sharing a front side bus is softened when processors find more of the data they are looking for locally. On the consumer side, Intel's 600 series doesn't have to deal with shared busses or server sized workloads. Will the 2MB L2 cache still come through and offer a significant performance improvement?

The short answer is that consumer applications running on a single processor system don't see the same kind of benefit from a 2MB L2 as do server workloads running on a DP Xeon. There are areas where performance is affected, but this time around Intel is again refining and broadening its platform rather than simply scaling up speed and power. Let's take a look at the new offerings introduced this week.

First off we've got the new Pentium 4 600 series, launched in four models:

  Model  Clock Speed  Socket L2 Cache  FSB
Intel Pentium 4 660 3.6GHz LGA-775 2MB 800MHz
Intel Pentium 4 650 3.4GHz LGA-775 2MB 800MHz
Intel Pentium 4 640 3.2GHz LGA-775 2MB 800MHz
Intel Pentium 4 630 3.0GHz LGA-775 2MB 800MHz

What advantage does the Pentium 4 600 offer over the 500 series?  The main features are a 2MB L2 cache, Enhanced Intel SpeedStep Technology (EIST) and EM64T support (Intel's version of AMD's x86-64). The Pentium 4 600 is still built on the same 90nm process as the Pentium 4 500, it's just got twice the cache (which we'll talk about later). Features like EIST and EM64T support were always there on previous 90nm Pentium 4s, they were simply not enabled.

Currently the 500 and 600 series chips are priced to coexist with one another, first let's have a look at what Intel's official prices are:

   Pentium 4 500 Series  Pentium 4 600 Series
3.8GHz (Model _70) $637 Q2 Release
3.6GHz (Model _60) $417 $605
3.4GHz (Model _50) $278 $401
3.2GHz (Model _40) $218 $273
3.0GHz (Model _30) $178 $224

Then let's take a look at street prices for the chips using our RealTime Pricing Engine:

   Pentium 4 500 Series (street price)  Pentium 4 600 Series (street price)
3.8GHz (Model _70) $690 Q2 Release
3.6GHz (Model _60) $425 $635
3.4GHz (Model _50) $279 $429
3.2GHz (Model _40) $231 $295
3.0GHz (Model _30) $184 $257

The other thing to note is that the 500 series still holds the clock speed crown, with the 570J running at 3.8GHz, while the fastest 600 series is a 3.6GHz Pentium 4 660.  What we're seeing here is another example of Intel's move away from clock speeds as the only "improvements" from chip to chip.  We will however see a 3.8GHz Pentium 4 670 in Q2 of this year. 

Intel's next announcement is the move to a new 90nm core for the Pentium 4 Extreme Edition.  Until now, all EE chips have been based off of the old 130nm Northwood core, but with the move up to 3.73GHz the Extreme Edition actually uses the same 90nm core as the new Pentium 4 600 series.

Giving up its 2MB L3 cache in favor of a lower latency 2MB L2 cache, the new Extreme Edition only offers two benefits over the regular Pentium 4 600 series CPUs: clock speed and 1066MHz FSB support.  Priced at $999, the new Extreme Edition is priced in accordance with its name, as all of its predecessors have.

The new core, shared by both the Pentium 4 600 and the new Extreme Edition chips, is still built on the same 90nm process as the original Prescott, but thanks to the larger cache weighs in at 169 million transistors, an increase of 44 million (or 35%) over the original Prescott 1M core. 

There's a decent amount to discuss with this new core, so let's start at the biggest change - the cache.

Twice the Cache - 17% Higher Latency


View All Comments

  • johnsonx - Monday, February 21, 2005 - link

    Is there no merit at all in running a few A64 vs P4 6xx benchmarks with the current RC build of XP x64? While I've found too many things I need don't work with XP x64 to use it, I did see that 3dMark03 ran fine. I know 3dMark itself isn't 64-bit, bit it does making heavy use of 64-bit DirectX and graphic driver calls. There must be a few more apps and games that could be called on...

    Maybe just limit the benchies to two processors, say an A64 3500+ vs. a Pentium 4 650, running the same benchmarks in 32-bit and 64-bit Windows, using just one GeForce 6xxx and one Radeon X8-something.

    It'd just be interesting and useful to see which processor runs 64-bit code better, both absolutely and compared to each processor's 32-bit performance.

    When the final release version of XP x64 does come out, it may be interesting to have benchmarks from the RC version to see what's improved (though I agree it wouldn't actually be useful in any practical sense).

    Or perhaps Anandtech knows something I don't, like the release XP x64 is so close that running benches on the RC would be moot....
  • SLIM - Monday, February 21, 2005 - link

    #30 and 36
    Hans is right, the 3000 and 3200 cores in the graphs are not available in retail (downclocked 130nm cores) and are meant to show power consumption scaling with speed increases. It's unfortunate that they left out the more interesting comparison (the 130nm 3500+). The only 90nm AMD chip in the power graphs is the 3500+.
  • coldpower27 - Monday, February 21, 2005 - link

    Very strange your the only guys so far that show an increase in power consumption of the P4 6xx Series over the 5xx Series. Reply
  • Regs - Monday, February 21, 2005 - link

    Wow, a lot of good comments here. mlittl3, most of the Anandtech's population know that the EE's are just overpriced Northwood's on steroids (Big heads, small balls). And the crayon wax melting comparison made me laugh out loud.

    I just find it funny Intel is trying to slap on everything but the kitchen sink on these processors to make them more appealing. What's next? Are they going to come with a microwave toaster oven combo? With all do respect to Intel, to add on such features is not an easy thing to do at a engineering level but once again I feel that their marketing team is still running the show.

    But what is AMD doing while Intel performs CPR on their Prescott's? All this news on Intel for the past few months left me nostalgic in what AMD is doing behind the scenes. SSE3 was their latest slap-on feature, but as we saw in your recent AMD article it offered little to no performance gain. AMD's next core has to offer lower L1-l2 Cache latencies. This is the only way I see AMD cornering Intel's Cores performance in every application. But im afraid we won't see any such thing until long-horn comes out in a few years. Until now we have to settle for worthless add-ons features for the desk-top consumers while we see both Intel and AMD battle the server market where Intel is mostly threatened.
  • HardwareD00d - Monday, February 21, 2005 - link

    In Soviet Russia, Prescott melts YOU! Reply
  • miketheidiot - Monday, February 21, 2005 - link

    why do the 3000 and 3200 have signifigantly higher power consumption than the 3500? I thought all 3200 and 3000 are also built on 90nm soi. Reply
  • RadeonGuy - Monday, February 21, 2005 - link

    Even With All the processors haveing 2mb cache they still suck ass Reply
  • Hans Maulwurf - Monday, February 21, 2005 - link

    #30 I think the 3000 and 3200 are not really Winchester cores. Maybe clocked down 130 nm cores.

    I´m interested in the memory timing of the A64. Is it 1T or 2T? This is an important information, you should always(!) give it the configuration part of reviews.
  • DerekWilson - Monday, February 21, 2005 - link

    One thing to remember about out power tests --

    We measure power draw at the wall. Power supplies are inefficient and magnify power draw at the wall. Power input to the PSU does not scale proportionally to power output.
  • Brian23 - Monday, February 21, 2005 - link

    I thought that all winchesters were 90nm SOI. Reply

Log in

Don't have an account? Sign up now