GPU Performance & Power

GPU performance of the new A14 is something that wasn’t very clearly presented during the launch of the new iPhone 12 series. Apple had first introduced the A14 within the new iPad series where it had promised performance increases relative to the A12, not the previous generation A13, and with a bit of math this resulted into a translated 8.3% generational increase which is rather smaller than we had expected given Apple’s recent GPU trajectory over the years. Furthermore, this was also the first release where Apple compared itself to the Android SoC competition which is something the company doesn’t usually do. All these factored into some rather low expectations for the GPU of the A14 – so let’s see how that pans out in practice:

Basemark GPU 1.2 - Medium 1440p - Off-Screen / Blit

Starting off with Basemark GPU 1.2, we’re seeing a 17% increase in peak performance relative to the iPhone 11 Pro and the A13 chip, which is a nice upgrade, but doesn’t tell the whole story. In the sustained performance figure after 30 minutes of running and when the phone reaches a thermal equilibrium, we see a 45% drop in performance. In this instance, it looks like the iPhone 12 Pro reached a lower sustained performance level than the iPhone 11 Pro which isn’t a great start, but that might change with differing workloads.

GFXBench Aztec Ruins - High - Vulkan/Metal - Off-screen

In the Aztec High test, the iPhone 12’s fare a bit better in their sustained performances, with the new chip showing a 21% increase in performance generationally. The peak performance figure is only 11% higher but generally this isn’t the figure that is important for gaming experiences on iPhones.

GFXBench Aztec High Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 12 Pro (A14) 🔥 Throttled N5 28.36 3.91 7.24 fps/W
iPhone 11 Pro (A13) 🔥 Throttled N7P 26.14 3.83 6.82 fps/W
iPhone 12 Pro (A14) ❄️ Peak N5 37.40 5.57 6.64 fps/W
iPhone 11 Pro (A13) ❄️ Peak N7P 34.00 6.21 5.47 fps/W
Galaxy S20 Ultra (Snapdragon 865) N7P 20.35 3.91 5.19 fps/W
Mate 40 Pro (Kirin 9000) 🔥 Throttled N5 27.37 5.39 5.07 fps/W
iPhone XS (A12) 🔥 Throttled N7 19.32 3.81 5.07 fps/W
Reno3 5G (Dimensity 1000L) N7 11.93 2.39 4.99 fps/W
iPhone XS (A12) ❄️ Peak N7 26.59 5.56 4.78 fps/W
Mate 40 Pro (Kirin 9000) ❄️ Peak N5 37.22 8.53 4.36 fps/W
ROG Phone III (Snapdragon 865+) N7P 22.34 5.35 4.17 fps/W
Mate 30 Pro (Kirin 990 4G) N7 16.50 3.96 4.16 fps/W
Galaxy S20+ (Exynos 990) 7LPP 20.20 5.02 3.59 fps/W
Galaxy S10+ (Snapdragon 855) N7 16.17 4.69 3.44 fps/W
Galaxy S10+ (Exynos 9820) 8LPP 15.59 4.80 3.24 fps/W

Looking at the power consumption of the new phones, we see again that both the peak and throttled performance figures of the new chip isn’t all that much different to the previous generation, as we’re seeing roughly 8% better performance at almost the same power envelope of around 3.9W. The peak power figure of the new chip seems to have been reduced this generation and that’s very much a welcome change, and that’s where the efficiency sees the largest delta to the A13.

GFXBench Aztec Ruins - Normal - Vulkan/Metal - Off-screen

In the normal setting configuration of the Aztec test, we’re seeing again a 11% increase in sustained performance generationally, and a similar 12% boost in peak performance. These are good improvements but still a bit less than we had expected given the A14’s new process node and new GPU.

GFXBench Aztec Normal Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 12 Pro (A14) 🔥 Throttled N5 77.44 3.88 19.95 fps/W
iPhone 12 Pro (A14) ❄️ Peak N5 102.24 5.53 18.48 fps/W
iPhone 11 Pro (A13) 🔥 Throttled N7P 73.27 4.07 18.00 fps/W
iPhone 11 Pro (A13) ❄️ Peak N7P 91.62 6.08 15.06 fps/W
iPhone XS (A12) 🔥 Throttled N7 55.70 3.88 14.35 fps/W
Galaxy S20 Ultra (Snapdragon 865) N7P 54.09 3.91 13.75 fps/W
iPhone XS (A12) ❄️Peak N7 76.00 5.59 13.59 fps/W
Reno3 5G (Dimensity 1000L) N7 27.84 2.12 13.13 fps/W
Mate 40 Pro (Kirin 9000) 🔥 Throttled N5 63.56 5.37 11.84 fps/W
ROG Phone III (Snapdragon 865+) N7P 58.77 5.34 11.00 fps/W
Mate 40 Pro (Kirin 9000) ❄️ Peak N5 82.74 7.95 10.40 fps/W
Mate 30 Pro (Kirin 990 4G) N7 41.68 4.01 10.39 fps/W
Galaxy S20+ (Exynos 990) 7LPP 49.41 4.87 10.14 fps/W
Galaxy S10+ (Snapdragon 855) N7 40.63 4.14 9.81 fps/W
Galaxy S10+ (Exynos 9820) 8LPP 40.18 4.62 8.69 fps/W

The power figures showcase a similar generational movement, with a slight performance increase at a slight power decrease. It’s good progression but again not quite fulfilling our expectations of a new process node bump.

GFXBench Manhattan 3.1 Off-screen

GFXBench Manhattan 3.1 Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 12 Pro (A14) 🔥 Throttled N5 103.11 3.90 26.43 fps/W
iPhone 12 Pro (A14) ❄️ Peak N5 137.72 5.63 24.46 fps/W
iPhone 11 Pro (A13) 🔥 Throttled N7P 100.58 4.21 23.89 fps/W
Galaxy S20 Ultra (Snapdragon 865) N7P 88.93 4.20 21.15 fps/W
iPhone 11 Pro (A13) ❄️Peak N7P 123.54 6.04 20.45 fps/W
iPhone XS (A12) 🔥 Throttled N7 76.51 3.79 20.18 fps/W
Reno3 5G (Dimensity 1000L) N7 55.48 2.98 18.61 fps/W
Mate 40 Pro (Kirin 9000) 🔥 Throttled N5 87.31 4.98 17.54 fps/W
iPhone XS (A12) ❄️Peak N7 103.83 5.98 17.36 fps/W
ROG Phone III (Snapdragon 865+) N7P 93.58 5.56 16.82 fps/W
Mate 40 Pro (Kirin 9000) ❄️Peak N5 124.69 8.28 15.05 fps/W
Mate 30 Pro (Kirin 990 4G) N7 75.69 5.04 15.01 fps/W
Galaxy S20+ (Exynos 990) 7LPP 85.66 5.90 14.51 fps/W
Galaxy S10+ (Snapdragon 855) N7 70.67 4.88 14.46 fps/W
Galaxy S10+ (Exynos 9820) 8LPP 68.87 5.10 13.48 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 61.16 5.01 11.99 fps/W
Mate 20 Pro (Kirin 980) N7 54.54 4.57 11.93 fps/W
Galaxy S9 (Exynos 9810) 10LPP 46.04 4.08 11.28 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 38.90 3.79 10.26 fps/W
Galaxy S8 (Exynos 8895) 10LPE 42.49 7.35 5.78 fps/W

Depending on the workload, the generational performance increases can be even smaller, as here in Manhattan the performance increase in a throttled state is only 3% better for the new A14 based iPhone, with also a minor power decrease at this state.

GFXBench T-Rex 2.7 Off-screen

GFXBench T-Rex Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 12 Pro (A14) 🔥 Throttled N5 260.28 4.08 63.97 fps/W
iPhone 11 Pro (A13) 🔥 Throttled N7P 289.03 4.78 60.46 fps/W
iPhone 12 Pro (A14) ❄️ Peak N5 328.50 5.55 59.18 fps/W
iPhone 11 Pro (A13) ❄️ Peak N7P 328.90 5.93 55.46 fps/W
Galaxy S20 Ultra (Snapdragon 865) N7P 205.37 3.83 53.30 fps/W
Mate 40 Pro (Kirin 9000) 🔥 Throttled N5 147.13 2.92 50.38 fps/W
iPhone XS (A12) 🔥 Throttled N7 197.80 3.95 50.07 fps/W
ROG Phone III (Snapdragon 865+) N7P 224.48 4.92 45.60 fps/W
iPhone XS (A12) ❄️Peak N7 271.86 6.10 44.56 fps/W
Galaxy 10+ (Snapdragon 855) N7 167.16 4.10 40.70 fps/W
Reno3 5G (Dimensity 1000L) N7 139.30 3.57 39.01 fps/W
Mate 40 Pro (Kirin 9000) ❄️ Peak N5 235.04 6.11 38.46 fps/W
Galaxy S20+ (Exynos 990) 7LPP 199.61 5.63 35.45 fps/W
Mate 30 Pro  (Kirin 990 4G) N7 152.27 4.34 35.08 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 150.40 4.42 34.00 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 166.00 4.96 33.40fps/W
Galaxy S9 (Exynos 9810) 10LPP 141.91 4.34 32.67 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 108.20 3.45 31.31 fps/W
Mate 20 Pro (Kirin 980) N7 135.75 4.64 29.25 fps/W
Galaxy S8 (Exynos 8895) 10LPE 121.00 5.86 20.65 fps/W

Finally, T-Rex showcases no improvements on the part of peak performance figures, although it does lower power consumption, and sustained performance for some reason is lower on the newer generation iPhone, although again it showcases quite lower power consumption so it’s possible the new chip is mainly running on the efficiency CPU cores in this workload.

Reasonable Upgrades

Generally speaking, our concerns over Apple’s lacklustre marketing on the GPU side of things seem to have been warranted as the new A14 and the 5nm process node doesn’t seem to bring substantial gains this generation. Performance is a little higher, and efficiency has also gone up as well, but it’s nowhere near the levels of improvements that Apple had been able to achieve with the A12 and A13. On one side that’s pretty understandable as those two generations had made huge leaps, and on the other hand it was maybe unreasonable to expect Apple to continue to make such gigantic strides on every generation.

Overall, the new iPhone 12 devices and the A14 still offer the very best gaming performance of any smartphone out in the market, showcasing significantly better experiences than any other Android competitor, but it’s also not a major noticeable upgrade over the iPhone 11 series devices.

System Performance Display Measurement
POST A COMMENT

102 Comments

View All Comments

  • MuminWolff - Wednesday, September 29, 2021 - link

    Thank you for sharing you can download
    <a href="https://coimobile.com/whatsapp-plus/">What... Plus</a> completely for free to enjoy texting and calling
    Reply
  • caribbeanblue - Friday, December 18, 2020 - link

    The 2GB extra RAM on the Pro models have shown in a lot of comparison videos I’ve watched on Youtube that they keep more apps open in the background than a standard Android phone with 12GB RAM. But I hope next year we’ll see 6GB in the normal and 8GB RAM in the Pro models, because I have problems keeping apps open in the background with the 4GB RAM in my 11 Pro Max as well. Reply
  • Samus - Wednesday, December 2, 2020 - link

    I mean, it’s going in a case anyway, the edges and texture of a phone mean nothing if it’s in a case. Which frankly it should be these are like $1000 investments and everybody eventually drops their phone at some point. I’ve been lucky enough to have never broken one, probably because it’s always in a case and I’m not clumsy enough for it to fall on its screen. Reply
  • crotach - Friday, December 4, 2020 - link

    I'm a tall person with massive hands and I prefer flat edged phones :) Reply
  • cha0z_ - Monday, November 30, 2020 - link

    The key part here is "mini" - that form factor is totally ok for small phones, but hold the 12 pro max and you can clearly tell it's a lot less comfortable vs the 11 pro max. Reply
  • austinsguitar - Monday, November 30, 2020 - link

    the edges are great at the regular and small sizes. just not okay for the huge phones your 4 foot tall girl friend has. you know. Reply
  • rrinker - Monday, November 30, 2020 - link

    I've always preferred the square edges older models to the rounder newer ones myself. Seemed like I had better grip and the phone wasn't about to slip out of my hand. Reply
  • RaLX - Monday, November 30, 2020 - link

    Exactly, I love the 12 edge, in fact I just went back to iPhones after years using Pixel and Nexus phones partly because I love the "new" old design of flat edges. Reply
  • Devo2007 - Tuesday, December 1, 2020 - link

    That’s how I feel about my 12 Pro Max as well. Yes, it’s big, but the flat edges actually provide a better grip for me. I would actually feel comfortable not using a case at least at home with this phone, which I definitely wouldn’t say about the iPhone 11 Pro Max. Reply
  • cha0z_ - Tuesday, December 1, 2020 - link

    I am using 11 pro max from over a year naked, never dropped it or had a feeling I don't have a good grip. Reply

Log in

Don't have an account? Sign up now