Mixed Random Performance

Our test of mixed random reads and writes covers mixes varying from pure reads to pure writes at 10% increments. Each mix is tested for up to 1 minute or 32GB of data transferred. The test is conducted with a queue depth of 4, and is limited to a 64GB span of the drive. In between each mix, the drive is given idle time of up to one minute so that the overall duty cycle is 50%.

Mixed 4kB Random Read/Write

The Intel Optane 905P holds on to a very comfortable performance lead on our mixed random IO test, but the SK hynix Gold P31 raises the bar for TLC-based SSDs by about 10%.

Sustained 4kB Mixed Random Read/Write (Power Efficiency)
Power Efficiency in MB/s/W Average Power in W

The Gold P31 has the lowest average power consumption on this test out of all the drives in this batch, which naturally leads to a massive lead in power efficiency: it delivers twice the performance per Watt of the next best drive.

Compared to other high-end TLC-based SSDs, the Gold P31 performs best during the more read-heavy phases of this test. Several competitors catch up to it and a few surpass it during the most write-intensive portions of the test, but that also tends to be where the P31's power usage advantage is widest.

Mixed Sequential Performance

Our test of mixed sequential reads and writes differs from the mixed random I/O test by performing 128kB sequential accesses rather than 4kB accesses at random locations, and the sequential test is conducted at queue depth 1. The range of mixes tested is the same, and the timing and limits on data transfers are also the same as above.

Mixed 128kB Sequential Read/Write

The mixed sequential read/write performance of the SK hynix Gold P31 is unimpressive. For once, its performance is about what we'd expect from a drive designed more for efficiency than raw performance. However, it still has an 18% lead over the slowest 8-channel drive in this batch.

Sustained 128kB Mixed Sequential Read/Write (Power Efficiency)
Power Efficiency in MB/s/W Average Power in W

The Gold P31 still completes this test with remarkably low power consumption (averaging less than 2W), but the relatively modest performance means its efficiency score is only about 33% above the next best drive in this bunch.

After starting out with a good sequential read speed, the SK hynix Gold P31's performance drops steeply when writes are added to the mix. It bottoms out just below 1GB/s with a 60% reads mix, and then gradually recovers performance to finish with a fairly typical sequential write speed. Power consumption from the P31 doesn't vary much across the test, and it's only above 2W at the very beginning of the test.

Sequential Performance Power Management


View All Comments

  • jaydee - Tuesday, September 1, 2020 - link

    Thanks Billy! Reading the part about the power efficiency though, any thoughts of quantifying the extra battery life you could expect to see (typical laptop) from the SK Hynix Gold P31 over a Phison E12? The numbers look impressive on paper in terms of percentages against other HDs, but what are we talking about? An extra.. 5/10/15/20 minutes under an extreme R/W heavy workload? What about an average R/W workload? For sure the price/performance is there too so it appears a good buy anyway, I just don't know what to make of the efficiency numbers in terms of actual computing experience. Reply
  • Jimster480 - Saturday, September 5, 2020 - link

    I just put this into my new Ryzen 4600H Powered Nitro 5 and it beats my EX920 in everything! Really a leap in performance and power consumption that wasn't expected from SK Hynix that has been an Also-ran until now! Reply
  • rlr297 - Wednesday, September 23, 2020 - link

    Is there an update on when the platinum drives will be released? I am looking for a 2TB variant. If not, do you have a 2TB drive you'd recommend for a laptop? Reply
  • MatthiasM - Tuesday, November 10, 2020 - link

    Hi All: Can I please ask for collective wisdom? I was very impressed by the review of this drive, especially the low power consumption for laptops. So, I bought one for my 2017 MacBook Air. This can use NVME drive with a Sintech Adapter, no problem. Several other NVME drive (WD, ADTA) run without problems. But when I built in this SK Hynix drive, it wouldn't start. It initiates the boot process, but won't complete it. But when I insert the drive in an external enclosure, it starts from it as boot drive, no problem. Only when it is internal, it won't start. Any suggestions? NVME controller incompatible with MacBook? Any ideas on how to fix this? Reply
  • oRAirwolf - Monday, November 30, 2020 - link

    A little late to the fold, but there was a comment about drive software and firmware updates. SK Hynix released a tool for this drive called Drive Manager: Easy Kit. It's available at the very bottom of this page: https://ssd.skhynix.com/GoldP31.html Reply
  • EarFull - Sunday, February 7, 2021 - link

    Totally over my head, I bought one of these off Amazon after finding out Hynix supplies OEM SSD's for Apple laptops. Thought I'd play with it as a peripheral plug in. Problem is, I can't find an external enclosure that is appropriate for it. I wrote Hynix and they commented it is only for INTERNAL use. Does anyone KNOW of an external enclosure suitable for this 1TB Hynix P31 Gold Drive? I don't care now if it is USB or Thunderbolt. Thank you. Reply
  • EarFull - Sunday, February 7, 2021 - link

    Tried the Hynix P31 Gold NVME in the OWC Envoy Express: did not work. Now OWC site states in this configuration only available for Windows 10. Bummer. Reply
  • EarFull - Thursday, February 11, 2021 - link

    Posted a comment two days ago and can't find it. To reiterate: bought Hynix P31Gold NVME to use as external drive. OWC Envoy Express will NOT work in this configuration on macOS. So, bought this SSK Aluminum M.2 NVME SSD Enclosure Adapter, USB 3.1 Gen 2 (10 Gbps) to NVME PCI-E M-Key Solid State Drive External Enclosure (Fits only NVMe PCIe 2242/2260/2280) to try. Indeed, it works perfectly for about $20. The enclosure is well made, metal, and comes with extra NVME 'screws' and such and two cabes for USB-C to USB-C as well as USB-C to USB-A. Hope this helps. Patrick Reply

Log in

Don't have an account? Sign up now