AnandTech Storage Bench - The Destroyer

The Destroyer is an extremely long test replicating the access patterns of very IO-intensive desktop usage. A detailed breakdown can be found in this article. Like real-world usage, the drives do get the occasional break that allows for some background garbage collection and flushing caches, but those idle times are limited to 25ms so that it doesn't take all week to run the test. These AnandTech Storage Bench (ATSB) tests do not involve running the actual applications that generated the workloads, so the scores are relatively insensitive to changes in CPU performance and RAM from our new testbed, but the jump to a newer version of Windows and the newer storage drivers can have an impact.

We quantify performance on this test by reporting the drive's average data throughput, the average latency of the I/O operations, and the total energy used by the drive over the course of the test.

ATSB The Destroyer
Average Data Rate
Average Latency Average Read Latency Average Write Latency
99th Percentile Latency 99th Percentile Read Latency 99th Percentile Write Latency
Energy Usage

The SK hynix Gold P31 doesn't set any performance records for TLC drives on The Destroyer, but it does deliver top-tier scores on every performance metric—competitive with drives like the Samsung 970 EVO Plus and WD Black SN750.

The energy usage by the P31 is unprecedented: it beats even low-power SATA and DRAMless NVMe drives. The P31 uses 30% less energy over the course of the test than the WD Black SN750, our previous record-holder for most efficient high-performance NVMe SSD. Meanwhile, most of the other fastest drives require two to three times the energy to complete The Destroyer.

AnandTech Storage Bench - Heavy

Our Heavy storage benchmark is proportionally more write-heavy than The Destroyer, but much shorter overall. The total writes in the Heavy test aren't enough to fill the drive, so performance never drops down to steady state. This test is far more representative of a power user's day to day usage, and is heavily influenced by the drive's peak performance. The Heavy workload test details can be found here. This test is run twice, once on a freshly erased drive and once after filling the drive with sequential writes.

ATSB Heavy
Average Data Rate
Average Latency Average Read Latency Average Write Latency
99th Percentile Latency 99th Percentile Read Latency 99th Percentile Write Latency
Energy Usage

The Gold P31 has great performance on the Heavy test, especially on the full-drive test run where it maintains fast read latencies better while most of the TLC competition falls behind by at least a little bit.

The energy usage of the Gold P31 is again in a different league from other high-end NVMe drives. The Toshiba/Kioxia BG4 is narrowly ahead on this measure, but that's the slowest NVMe drive in this batch. As with The Destroyer, the WD Black's previously class-leading efficiency is beat by at least 30%.

AnandTech Storage Bench - Light

Our Light storage test has relatively more sequential accesses and lower queue depths than The Destroyer or the Heavy test, and it's by far the shortest test overall. It's based largely on applications that aren't highly dependent on storage performance, so this is a test more of application launch times and file load times. This test can be seen as the sum of all the little delays in daily usage, but with the idle times trimmed to 25ms it takes less than half an hour to run. Details of the Light test can be found here. As with the ATSB Heavy test, this test is run with the drive both freshly erased and empty, and after filling the drive with sequential writes.

ATSB Light
Average Data Rate
Average Latency Average Read Latency Average Write Latency
99th Percentile Latency 99th Percentile Read Latency 99th Percentile Write Latency
Energy Usage

The SK hynix Gold P31's overall performance on the Light test is just a few percent slower than the first-place drives, but as with the Heavy test we see the P31 handling the full-drive test run better than the competition. This time, the P31 doesn't quite manage to beat the energy usage scores from the Toshiba/Kioxia BG4 or its SATA sibling the Gold S31, but compared to the rest of the NVMe drives the story remains the same: the P31 sets a new power efficiency goal for the competition to aim for.

Cache Size Effects Random Performance
Comments Locked

80 Comments

View All Comments

  • vladx - Thursday, August 27, 2020 - link

    I have a SX8200 Pro on my laptop, do I need to enable the laptop Power Management state or is it detected automatically by the firmware?
  • Billy Tallis - Thursday, August 27, 2020 - link

    That really depends on what combination of firmware and driver bugs the laptop vendor gave you. But in theory, if the machine originally came with a M.2 NVMe drive, it should have been configured for proper power management and should continue to work well with an aftermarket SSD that doesn't bring any new power management bugs. I think the SX8200 Pro is okay on that score; the slow wake-up times shouldn't prevent the system from trying to use the deep idle states because the drive still promises the OS that it will have reasonable wake-up times.
  • vladx - Thursday, August 27, 2020 - link

    My laptop is a MSI Creator 17 that came with a Samsung PM981 drive. Could HWinfo offer any help in identifying the active power states?
  • Billy Tallis - Thursday, August 27, 2020 - link

    I'm not sure. I think you can figure out what PCIe power management settings are being used by digging through the PCI configuration space, but I'm not sure how easy it is to get that info while running Windows. As for the NVMe power management settings, my understanding is that it's impossible or very nearly impossible to access that information under Windows, at least with the usual NVMe drivers. The only reliable way I know of to confirm that everything is working correctly to get your SSD idling below 10mW is to have expensive power measurement equipment.
  • vladx - Thursday, August 27, 2020 - link

    Ok thanks, Billy. I was going to install Fedora anyways as secondary OS so I guess I'll try the Linux route then.
  • MrCommunistGen - Thursday, August 27, 2020 - link

    vladx, I'm really interested in how you go about trying to tease the NVMe power management info out of the drive. I did some internet searches a while back and didn't find anything definitive that I was able to follow and get results from. I've only ever used Debian-based distros, but if you're able to figure it out in Fedora then at least I'll know it is possible.
  • Foeketijn - Thursday, August 27, 2020 - link

    Did it happen? Did Samsung finally get an actual competitor? It doesn't really beat the 970 evo that much, so the 970 pro would still be better, but not at this price point, and definitely not with this power usage.
    Last time intel did that, Samsung suddenly woke up and beat them down again to a place where they stayed since.
    Interesting to see what the new evo and pro line will bring.
    Not high margin prices this time arround I guess.
  • LarsBolender - Thursday, August 27, 2020 - link

    This has to be one of the most positive AnandTech articles I have read in years. Good job SK Hynix!
  • Luminar - Thursday, August 27, 2020 - link

    No recommendation sticker, though.
  • Zan Lynx - Thursday, August 27, 2020 - link

    It would be handy if you could add a power loss consistency test. I have a Dell with an older hynix NVMe and one time the battery ran down in the bag, and on reboot its btrfs was corrupt.

    Imagine these are sequence numbers in metadata blocks.
    Correct: 10 12 22 30
    Actual: 10 12 11 30

    The hynix had committed writes for SOME of the blocks but a few in the middle of the update chain were old versions of the data. According to btrfs flush rules that is un-possible. Which means that the drive reported a successful write for 22 and for 30 but after powerloss recovery it lost that write for 22 and reverted to an older block.

    I mean, that's better than some of the older flash drives that would trash the entire FTL and lose all the data. But it is not exactly GOOD.

    I'm pretty sure Samsung consumer drives will also lose the data but at least they will revert all of the writes following the lost data, so in my example it would revert write 30 also. That would at least leave things in a logically consistent state.

Log in

Don't have an account? Sign up now