Hybrid CPUs: Sunny Cove and Tremont

Now that we’ve gone over the concept of the heterogeneous core design, it’s time to dig into each of the cores separately and some of the tradeoffs that Intel has had to do in order to get this to work.

Big Sunny Cove

As mentioned previously, the big core in Lakefield is known as Sunny Cove, and stands as the same core we currently see in Intel’s Ice Lake mobile processors today. It is officially Intel’s second 10nm-class core (the first one being the DOA Cannon Lake / Palm Cove), but the first one in mass production.

We have covered the Sunny Cove core microarchitecture in great detail, and you can read about it here:

Examining Intel's Ice Lake Processors: Taking a Bite of the Sunny Cove Microarchitecture

The quick recap is as follows.

Very similar to a Skylake design, except that:

  • Better prefetchers and branch predictors
  • +50% L1 Data Cache
  • +100% L1 Store Bandwidth
  • +100% L2 Cache w/improved L2 TLB
  • +50% Micro-op Cache
  • +25% uops/cycle into reorder buffer
  • +57% reorder buffer size
  • +25% execution ports
  • AVX-512 with VNNI

The side effect of increasing the L1 Data cache size was a decrease in latency, with the L1-D moving to a 5-cycle rather than a 4-cycle. Normally that would sound like a 25% automatic speed drop, however the increased L1 size, L1 bandwidth, and L2 cache all help for an overall improvement.

Intel claimed that Sunny Cove should perform ~18% better clock-for-clock compared to a Skylake core design. In our initial review of Ice Lake, we compared the i7-1065G7 processor (Ice Lake) to the Core i9-9900K processor (Coffee Lake, a Skylake derivative), and saw a 19% increase in performance per clock, essentially matching Intel’s advertised numbers.

(However it should be noted that overall we didn’t see that much of an improvement at the overall chip and product level, because the Ice Lake ran at a lower frequency, which removed any raw clock speed gain.)

Small Tremont Atom

Arguably the Tremont core is the more interesting of the two in the Lakefield design. Lakefield will be the first consumer product built with a Tremont core inside, and as a result we have not had a chance to test it yet. But we have gone over the microarchitecture extensively in a previous article.

Intel's new Atom Microarchitecture: The Tremont Core in Lakefield

The reason why Tremont is more exciting is because updates to Intel’s Atom line of processor cores happen at a much slower pace. Traditionally Atom has been a core that focuses on the low cost part of the market, so there isn’t that much of a need to make it right at the bleeding edge as it commands lower margins for the company. It still plays a vital role, but for context, here is what year we’ve seen new Atom designs come into the market:

  • 2008: Bonnell
  • 2011: Saltwell
  • 2013: Silvermont
  • 2015: Airmont
  • 2016: Goldmont
  • 2017: Goldmont Plus
  • 2020: Tremont

Tremont is the first new Atom microarchitecture design for three years, and technically only the third Atom design to be an out-of-order design. However, Tremont is a big jump in a lot of under-the-hood changes compared to Goldmont Plus.

  • Can be in a 1-core, 2-core, or 4-core cluster
  • +33% L1-Data Cache over Goldmont+, no performance penalty
  • Configurable L2 cache per cluster, from 1.5 MB to 4.5 MB
  • +50% L2 TLB (1024-entry, up from 512)
  • New 2x3-wide decoder, rather than single 3-wide decoder
  • +119% re-order buffer (208, up from 92)
  • 8 execution ports, 7 reservation stations
  • 3 ALUs, 2 AGUs
  • Dual 128-bit AES units
  • New Instructions*

What made the most noise is the new dual 3-wide decoder. On Intel’s primary Core line, we haven’t seen much change in the decoder in recent generations – it still uses a 5-wide decoder, split between 1 complex decoder and 4 simple decoders, backed with a micro-op cache. Tremont’s new dual 3-wide decoder can manage dual data streams in order to keep the buffers further down the core fed. Intel stated that for the design targets of Tremont, this was more area and power efficient than a 6-wide decoder, or having a large micro-op cache in the processor design (Atom cores have not have micro-op caches to date). Intel states that the decoder design helps shape the back-end of the core and the balance of resources.

Also worthy of note in Tremont is the L1-Data cache. Intel moved up from a 24 KiB design to a 32 KiB design, an increase of 33%. This is mostly due to using the latest manufacturing node. However, an increase in cache size is typically accompanied with an increase in latency – as we saw on Sunny Cove, we moved from a 4-cycle to a 5-cycle. However in Tremont’s case, the L1-Data cache stays at 3-cycle for an 8-way 32 KiB design. Even Skylake’s L1-D cache, at an 8-way 32 KiB design, is a 4-cycle, which means that Tremont’s L1-D is tuned to surpass even Skylake here.

The final point, Tremont’s new instructions, requires a section all on its own, specifically because none of the new instructions are supported in Lakefield.

What’s Missing in Lakefield

One of the biggest issues with a heterogeneous processor design is software. Even if we go beyond the issues that come with scheduling a workload on such a device, the problem is that most programs are designed to work on whatever microarchitecture they were written for. Generic programs are meant to work everywhere, while big publishers will write custom code for specific optimizations, such as if AVX-512 is detected, it will write AVX-512.

The hair-pulling out moment occurs when a processor has two different types of CPU core involved, and there is the potential for each of them to support different instructions or commands. Typically the scheduler makes no guarantee that software will run on any given core, so for example if you had some code written for AVX-512, it would happily run on an AVX-512 enabled core, but cause a critical fault on a core that doesn’t have AVX-512. The core won’t even know it’s an AVX-512 instruction until it comes time to decode it, and just throw an error when that happens. Not only this, but the scheduler has the right to move a thread when it needs to – if it moves a thread in the middle of an instruction stream, that can cause errors too. The processor could also move a thread to prevent thermal hotspots occurring, which will then cause a fault.

There could be a situation where the programmer can flag that their code has specific instructions. In a program with unique instructions, there’s very often a check that tries to detect support, in order to say to itself something like ‘AVX512 will work here!’. However, all modern software assumes a homogeneous processor – that all cores will support all of the same instructions.

It becomes a very chicken and egg problem, to a certain degree.

The only way out of this is that both processors in a hybrid CPU have to support the same instructions completely. This means that we end up with the worst of both worlds – only instructions supported by both can be enabled. This is the lowest common denominator of the two, and means that in Lakefield we lose support for AVX-512 on Sunny Cove, but also things like GFNI, ENCLV, and CLDEMOTE in Tremont (Tremont is actually rather progressive in its instruction support).

Knowing that Lakefield was going to have to take the lowest common denominator from the two core designs, Intel probably should physically removed the very bulky AVX-512 unit from the Sunny Cove core. Looking at the die shot, it's still there - there was some question going into the recent disclosures as to whether it would still be there, but Intel has stated on the record repeatedly that they removed it. The die shot of the compute silicon shows that not to be the case.

For x86 programmers doing instruction detection by code name or core family, this might have to change. In the smartphone world, where 4+4 processor designs are somewhat the norm, this lowest common denominator issue has essentially been universally adopted. There was some slight issue with a Samsung processor that had a non-unified cache setup, which ended up being rectified in firmware. But both sets of CPUs had to rely on lowest common denominator instructions.

Thermal Management on Stacked Silicon How To Treat a 1+4 Hybrid CPU
Comments Locked

221 Comments

View All Comments

  • Valantar - Sunday, July 5, 2020 - link

    Uhm, I have to ask, did you write this comment eight months ago? AMD has been kicking Intel's butt in 15W laptops since the first Renoir laptops hit the streets. While that did take a while after the initial presentation, their advantage is nonetheless significant both in performance and power draw.
  • serendip - Monday, July 6, 2020 - link

    AMD doesn't have anything in the 5W TDP range. Not yet, anyway. The problem is that Lakefield brings middling performance at a high price. Intel already has 5W and 4W parts, check out the Pentium 4425Y and m3-8100Y in the Surface Go 2. Those chips are much cheaper and easier to fab than Lakefield and they bring equal or higher performance.
  • Kangal - Tuesday, July 7, 2020 - link

    The best sku chipset that AMD makes in the "15W bracket" is the 4800U. However, that's with the TDP-down as it's not a proper 15W part. Plus, there are no laptops with that combination yet. The Lenovo Yoga Slim7 has the chipset, but it is at the 25W bracket, and apparently that goes much higher during use when possible.

    So no, AMD isn't quite kicking Intel's butt in the Ultrabook segment yet. Maybe in 6 months, when yields improve and more vendors join. But for now, Intel is still the dominant force in the Thin & Light segment. AMD they're killing it at the Regular Laptop market, the Entire Desktop Market, the Server market, and the Console market. However, ARM is pretty much going to take over the Server Market now that the big companies are moving that way, and since Linux drivers have matured on ARMv8_64. The laptop segment is safe for now, but the new Macs might cause other vendors to think beyond Windows, or think beyond x86. The Console segment and Desktop segments are safe for now (and for at least this decade).
  • Spunjji - Friday, July 10, 2020 - link

    That's an arbitrary distinction if ever I saw one. By that definition, Ice Lake is a 28W part operating in "TDP down" to 15W.

    AMD could conceivably laser 4 cores and 60% of the GPU off a Renoir chip, drop the clocks and end up with a "5W" part not dissimilar to Intel's M3 series. It wouldn't make any sense for them to do so, though, because they can't make enough chips as it is and it wouldn't really buy them any meaningful market share.
  • Kangal - Friday, July 10, 2020 - link

    I didn't discount the 4800U at all. I merely stated the fact that it is, in fact, a 25W chipset and it can operate at 15W with TDP-down. I'm not sure you quite understand this tier system.

    But anyways, my point was that AMD's best 15W option is the 4800U, but we don't know how it actually performs because there are no devices out there. From what we can speculate, it should be very competitive, but Intel really has championed the Ultrabook market in the last decade. So for all intents and purposes, Intel is probably still ahead here by a hair, yet they could've had a larger lead if they implemented the above design I tried to explain. Too bad. AMD will humiliate/supersede them completely in a year or two at this pace.
  • Spunjji - Monday, July 6, 2020 - link

    "And AMD would struggle to fit those technologies into a 8-core laptop processor, so there would be no threat from above."

    Boy, you really need to keep up with the news...
  • Kangal - Tuesday, July 7, 2020 - link

    No, you didn't read that correctly.
    AMD doesn't have any 8-core processor on their 16nm/14nm/12nm node, that is, confined to the thermal profile of a laptop. I was saying Intel needed to release the processor that I outlined, and release it years ago. And if they did that, then their only competition would be Renoir/Ryzen-4000, and even then AMD would lose on the low-voltage (Ultrabook) market and win on the regular (Laptop) market.

    See the above comment by serendip. AMD is working on having lower and lower voltage chips. Their lowest power one I think is still the V1605B embedded chip. But right now, that small company is really stretched thin. They're working on Servers, on HDD optimisations, on making GPUs, on optimising GPUs, on making console processors, on desktops, laptops, and a few other budget options.

    By the time AMD actually properly polishes the driverset for laptops/battery drain, it's going to be another year. But hopefully, on the next set of chips they update the graphics (from Vega to RDNA). It's possible they might ditch the monolithic design of their mobile chips, and shift those over to a chiplet design as well. This will take a hit to performance, and to efficiency... but on the bright side it should mean even cheaper processors to vendors and consumers-alike.
  • Spunjji - Friday, July 10, 2020 - link

    I think I understand now, but the phrasing was confusing!
  • eastcoast_pete - Thursday, July 2, 2020 - link

    It's beyond embarrassing, it's borderline idiotic. Intel's "performance" cores have one unique differentiator going for them, and that is the ability to execute AVX, especially AVX2 and AVX512 instructions. Doing what they did means they basically gelded their own big core, and this gelding won't win any performance crowns.
    I sort of get why it's hard to have a scheduler trying to work with cores that have different capabilities, but is it really impossible to have one that makes it a hard and fast rule that if an AVX instruction is called for, the big core gets fired up? Now, I am not able to program one of these myself, but, as a user, I would rather pay a little power consumption penalty and have a real Sunny Cove-like large core than an overgrown Atom as the "performance" core. Big mistake.
  • brantron - Thursday, July 2, 2020 - link

    The trouble with AVX on the Sunny Cove core is it will still only be one core.

    So add another, and call it...Ice Lake Y? Wait a minute... :p

    After more than a decade, Atom for PC still looks like a square peg in a round hole.

Log in

Don't have an account? Sign up now