Implementations Choices & Customers

Naturally, the Cortex-X1 is expected to be quite bigger than a Cortex-A78, but not dramatically more. Arm does warn though that for mobile designs it’s extremely unlikely that we’ll see implementations with more than two X1 cores. The company here is essentially embracing the industry trend of going for a three tier core hierarchy, and with the introduction of the A78 and X1, they’re allowing customers to build such systems with much more flexibility and more differentiation than the frequency and process library differentiation we’ve been seeing on today’s “mid” and performance cores.

There’s still going to be customers who may be cost averse or simply not take part in the “Cortex-X Program”, who might just avoid the X1 and just go with A78 cores. The comparison Arm is making here is against an equivalent A77 setup, and the A78 cores would indeed bring a good amount of area savings all while improving performance.

Cortex-X1 implementers would very likely go for a hybrid cluster implementation with X1, A78 and A55 cores in a DSU. Arm here depicts Qualcomm’s favorite 1+3+4 configuration, and it's a logical setup that we’d expect to see in a future Snapdragon chip.

Today’s announcement of the Arm cores also came with an unusual quote from Samsung LSI:

“Samsung and Arm have a strong technology partnership and we are very excited to see the new direction Arm is taking with Cortex-X Custom program, enabling innovation in the Android ecosystem for next-gen user experiences.”

- Joonseok Kim, vice president of SoC design team at Samsung Electronics

It’s extremely rare to hear Samsung talk about a new Arm IP like this during a launch, and I think it’s pretty safe to say that this is very much an indirect confirmation that they’re a licensee of the X1 cores. In which case, we’ll be seeing the core in the next generation of flagship Exynos chipsets. Looking back at what happened with Samsung’s custom CPU design team last year as well as their lackluster performance of their custom cores, the very existence of the X1 probably further sealed the fate for their custom core efforts. The only remaining questions for me is whether they’ll go for a 1+3+4, or a 2+2+4 setup, and if Samsung’s 5nm will showcase better competitiveness compared to their lagging 7nm node.

Meanwhile HiSilicon, being in the middle of political turmoil, probably won't get to produce an X1 chip; plus the vendor has a tendency not always use the latest CPU IPs anyhow. MediaTek would be the last candidate licensee for the X1 – but here I’m also relatively uncertain if the company’s cost-oriented mantra actually fits well with the X1’s philosophy of going all out on area, with the likelihood that it’s also more expensive to license.

First Impressions - Arm Finally Going For Pure Performance

Today’s reveal of the Cortex-A78 and Cortex-X1 brought both the expected and the unexpected. I've had relatively modest expectations of the A78, as for years we had been told it would be the smallest upgrade amongst the new Austin family of Arm CPU microarchitectures. The A76 and A77 were after all both big leaps in performance and IPC. What I didn’t expect was for Arm to really focus on maximizing the PPA of the design, with efficiency being a first-class citizen in terms of design priorities. In that sense, the A78’s performance improvements might be a little tame compared to previous generations, but seemingly it’s still going to be an excellent core that is going to continue Arm's recent strides in outstandingly efficient computing.

Meanwhile the Cortex-X1 is a big change for Arm. And that change has less to do with the technology of the cores, and more with the business decisions that it now opens up for the company, although both are intertwined. For years many people were wondering why the company didn't design a core that could more closely compete with what Apple had built. In my view, one of the reasons for that was that Arm has always been constrained by the need to create a “one core fits all” design that could fit all of their customers’ needs – and not just the few flagship SoC designs.

The Cortex-X program here effectively unshackles Arm from these business limitations, and it allows the company to provide the best of both worlds. As a result, the A78 continues the company’s bread & butter design philosophy of power-performance-area leadership, whilst the X1 and its successors can now aim for the stars in terms of performance, without such strict area usage or power consumption limitations.

In this regard, the X1 seems really, really impressive. The 30% IPC improvement over the A77 is astounding and not something I had expected from the company this generation. The company has been incessantly beating the drum of their annual projected 20-25% improvements in performance – a pace which is currently well beyond what the competition has been able to achieve. These most recent projected performance figures are getting crazy close to the best that what we’ve seeing from the x86 players out there right now. That’s exciting for Arm, and should be worrying for the competition.

Performance & Power Projections: Best of Both Worlds
Comments Locked

192 Comments

View All Comments

  • tkSteveFOX - Wednesday, May 27, 2020 - link

    Would be great if we get a 1 x X1 + 3xA78 and 4xA55 with 4MB L3 shared between the big cores.
    Or just 2 x X1 and 6xA55 cores with 8MB L3 cache for the X1 cores (would be interesting to see the efficiency here compared to the above).
    5nm gives a lot of headroom and even using 1x3GHz A77 and 3x2.7 GHz A77 is possible under this node.
  • ReverendDC - Wednesday, May 27, 2020 - link

    I'm excited to see what comes of this for Windows on ARM. I know that's are some that will find it pointless, but there are millions of office workers and IT pros that support them that would find an all-day, cheaply replaceable, Office chewing, LTE/5G always connected device to be quite useful...

    For years Intel has tried to make an all-day system, and finally straight gave up! Yes, Windows is "heavier" on system calls, but then again, Linux can be as well. Seems to have shoehorned in nicely after 4+ years of trial and error (and Law and Order, but...) with Android. While I wouldn't buy a Surface Pro X, it does do 80% of what to expect from a full day Win10 x86 system. That's progress. Let's see if this makes more!
  • serendip - Wednesday, May 27, 2020 - link

    The X1 belongs in a flagship ARM Windows device like the next Surface Pro X. The current model has a Qualcomm SQ1 and it already performs at 8th gen Core i5 levels, with half the power consumption when running ARM code. An X1-based SoC could offer top tier i7 performance at half the power and hopefully a lower price. Competition is good to keep Intel honest.
  • ballsystemlord - Thursday, May 28, 2020 - link

    @Andrei You have a technical error:
    "...all while reducing power by 4% and reducing area by 4%"
    In the picture area reduction is 5, not 4 percent.
    "...all while reducing power by 4% and reducing area by 5%"
  • anonomouse - Saturday, May 30, 2020 - link

    So with two tiers of big cores now, and presumably a new small core and supposedly a new middle-ish core to span the ever-increasing gap between big and little... does this mean that in a couple of years Android phones will have to deal with scheduling across 4 different types of cores? bigger.big.middle.little?
  • fozia - Saturday, June 6, 2020 - link

    I agree. But it's not an achievement to be slower than a 1-year old chip This creates the problem that you cannot hyper-focus on any one area of the PPA triangle without making compromises in the other two.
  • vladpetric - Friday, June 26, 2020 - link

    Peak performance is not performance.

    "Peak" is really just a value you're guaranteed to never exceed ...
  • mi1400 - Tuesday, October 6, 2020 - link

    https://images.anandtech.com/doci/15813/A78-X1-cro...
    Why the yellow and orrange starting points/dots have drift in them. The Spec Performance axiz doesnt mandate them to let one start ahead of other. And if this mandate is applied/removed conjoining both stating points the difference of performance will be so similar that both lines will seem overlapping... infact curves between 2nd and 3rd dots of A77/A78 will make A78 even slower. Curves between 3rd and 4th dots of A77/A78 will give A78 some benefit but again curve between 4th and and 5th dots will make A77 = A78.
    What do u say!?! Thanks!
  • ChrisGX - Monday, October 12, 2020 - link

    A lot of people are saying that with Cortex-X1 ARM is bringing the fight to Apple’s powerhouse CPUs, i.e. the potent custom ARM processors that Apple develops for consumer computing products.

    Actually, that isn't exactly what is happening. I had a close look at the performance data (using ARM's own projections) and it looks like it will take until the Makalu generation before a successor to the X1 (very nearly) catches up to the A14 on outright (integer) performance. For some time, Apple has had a 2.5 year lead in the performance stakes over ARM and no change is on the cards in that regard. Cortex X1, contrary to ARM's public remarks, continues the existing strategy of winning on energy efficiency not seeking performance gains at any cost. As a matter of fact, the energy efficiency of the X1 isn't too bad as a starting point. And, when modestly clocked A78 cores are also in the mix energy efficiency improves greatly. With the next generation of SoCs based on A78 and X1 licensed ARM cores manufacturers will have the opportunity to either sharply reduce power consumption or add new and advanced processing capabilities without raising power budgets. And, that can be achieved while offering a good (single threaded) performance boost of 33% (or more) over existing A77 based processors.

    When its comes to outright execution speed it seems that ARM is pushing harder on floating point performance than other areas. In that area ARM could conceivably reach performance parity with Apple's SoCs sooner rather than later.
  • Salman Ahmed - Tuesday, April 6, 2021 - link

    Can Cortex A75 and Cortex A76 be pared together?

Log in

Don't have an account? Sign up now