BAPCo SYSmark 2018

The Intel NUC9i9QNX (Ghost Canyon) was evaluated using our Fall 2018 test suite for small-form factor PCs. In the first section, we will be looking at SYSmark 2018.

BAPCo's SYSmark 2018 is an application-based benchmark that uses real-world applications to replay usage patterns of business users in the areas of productivity, creativity, and responsiveness. The 'Productivity Scenario' covers office-centric activities including word processing, spreadsheet usage, financial analysis, software development, application installation, file compression, and e-mail management. The 'Creativity Scenario' represents media-centric activities such as digital photo processing, AI and ML for face recognition in photos and videos for the purpose of content creation, etc. The 'Responsiveness Scenario' evaluates the ability of the system to react in a quick manner to user inputs in areas such as application and file launches, web browsing, and multi-tasking.

Scores are meant to be compared against a reference desktop (the SYSmark 2018 calibration system, a Dell Optiplex 5050 tower with a Core i3-7100 and 4GB of DDR4-2133 memory to go with a 128GB M.2 SATA III SSD). The calibration system scores 1000 in each of the scenarios. A score of, say, 2000, would imply that the system under test is twice as fast as the reference system.

SYSmark 2018 - Productivity

SYSmark 2018 - Creativity

SYSmark 2018 - Responsiveness

SYSmark 2018 - Overall

Systems equipped with 65W+ TDP desktop processors get higher scores in most workloads, though only the DeskMini Z370 manages an higher overall rating compared to the NUC9i9QNX. The surprising result is the responsiveness score for the two Ghost Canyon configurations - having the Optane drive talk directly to the CPU without the DMI bottleneck makes the system significantly more responsive.

SYSmark 2018 also adds energy measurement to the mix. A high score in the SYSmark benchmarks might be nice to have, but, potential customers also need to determine the balance between power consumption and the efficiency of the system. For example, in the average office scenario, it might not be worth purchasing a noisy and power-hungry PC just because it ends up with a 2000 score in the SYSmark 2014 SE benchmarks. In order to provide a balanced perspective, SYSmark 2018 also allows vendors and decision makers to track the energy consumption during each workload. In the graphs below, we find the total energy consumed by the PC under test for a single iteration of each SYSmark 2018 workload. For reference, the calibration system consumes 5.36 Wh for productivity, 7.71 Wh for creativity, 5.61 Wh for responsiveness, and 18.68 Wh overall.

SYSmark 2018 - Productivity Energy Consumption

SYSmark 2018 - Creativity Energy Consumption

SYSmark 2018 - Responsiveness Energy Consumption

SYSmark 2018 - Overall Energy Consumption

The NUC9i9QNX is hobbled slightly by the power-hungry Optane drive and high-TDP discrete GPU, making it approach the other desktop CPU-based systems in the list when the overall energy consumption is considered. Compared to a x16 configuration, operating the GPU at x8 results in lowered energy consumption for the SYSmark 2018 workloads.

Setup Notes and Platform Analysis UL Benchmarks - PCMark, 3DMark, and VRMark
POST A COMMENT

109 Comments

View All Comments

  • Silma - Friday, April 17, 2020 - link

    Just saw your gaming benchmarks are in 720p. Why?
    If this computer can't have decent gaming at 1080p, what's the point of spending $1,300 ?
    Reply
  • ganeshts - Friday, April 17, 2020 - link

    Some are at 720p to provide context when compared with older SFF PCs we have evaluated before. Every benchmark has a 4K entry too. Please click the appropriate selection button to view the 4K comparison graph. Reply
  • nandnandnand - Friday, April 17, 2020 - link

    Turn your script blocker off if you don't see any buttons for 1080p, 2160p, etc. Reply
  • ballsystemlord - Friday, April 17, 2020 - link

    @Ganesh This review is far more complete then the recent AMD laptop one. Why?
    I was really hoping for more details but then thought you might have reduced the amount of benchmarks only to see you're fine review on this NUC.
    Reply
  • ganeshts - Friday, April 17, 2020 - link

    Different reviewers having different amounts of time to spend on a particular review. Ian covers a lot lot more things than I do (I publish one or two pieces a month, Ian publishes two or three a week) Reply
  • ballsystemlord - Friday, April 17, 2020 - link

    I'm sorry to hear that Ian's so busy. Thanks for your fast reply! Reply
  • ballsystemlord - Friday, April 17, 2020 - link

    I noticed one spelling error (I didn't read the whole thing throughly):

    "Though make no mistake: while biggest than the smallest NUCs, this is still well within the realm of SFF PCs."
    Incorrect suffix:
    "Though make no mistake: while bigger than the smallest NUCs, this is still well within the realm of SFF PCs."
    Reply
  • Namisecond - Friday, April 17, 2020 - link

    Ganesh brings up an interesting comparison to the Zotac discrete GPU boxes. Those are very hit or miss, because of their very niche, boutique pricing and Intel wants to charge almost double what Zotac is charging. They're both in the same, roughly 5 Liter, range with a very similar features list, including a standard PCIe graphics card on a PCIe x16 slot. But how does that compare to a DIY enthusiast build?

    Well I've got news for Intel. I just built a 5.25 Liter SFF PC using off-the-shelf, industry standard desktop components for around $700USD (the BoM might be $800 now). The ease of upgrading and appearance is arguably better too. No cheap plastic trim. If something breaks, I can hit up a plethora of 3rd party vendors for spare parts. Why did I build this specific machine? Because of the hype around the NUC 9 announcement 3-4 months back. I wanted to see where the state of DIY SFF was. Back in the days when I first got started building SFFs, case choices were very slim and they were pretty big. It all came down to the enclosures. Now with cases like the Velka 3, the Geeek A30 and the no-name Shenzen K39, companies like Zotac and Intel have to step up their game, especially for the prices they're charging. For Zotac, I think they'll continue on doing as they have. The price premium they charge can be justified, to an enthusiast, as time saved in sourcing and building. Intel's NUC 9 on the other hand....probably won't do very well. The price premium they charge is very hard to justify, considering vendor and platform lock-in...unless you place a high value on bragging rights.
    Reply
  • Deicidium369 - Sunday, April 19, 2020 - link

    I have had NUCs since the first model and have over 60 deployed as we speak. The original was used non stop for 3 years as a MQTT server - and had never had issues - I have had absolutely zero failures or issues - did get a bum stick of RAM that took a bit to diag.

    I agree that this and the Comet Lake NUC will not do great - I think Comet Lake in general is not going to do well - even if you need a machine TODAY, and want an upgrade path to Rocket Lake fine - socket compatible - but won't have PCIe4 that the "Z590" will have so....

    Am looking forward to the NUC10 with Tiger Lake.
    Reply
  • kwinz - Friday, April 17, 2020 - link

    If you are wondering about similar size AMD Zen2 8 core products check out the HP EliteDesk 705 G5 Small Form Factor computer. It's absolutely amazing for the size and comes with up to 4 year on site warranty for business customers. Reply

Log in

Don't have an account? Sign up now