Conclusion & End Remarks

We’ve been hearing about Arm in the server space for many years now, with many people claiming “it’s coming”; “it’ll be great”, only for the hype to fizzle out into relative disappointment once the performance of the chips was put under the microscope. Thankfully, this is not the case for the Graviton2: not only were Amazon and Arm able to deliver on all of their promises, but they've also hit it out of the park in terms of value against the incumbent x86 players.

The Graviton2 is the quintessential reference Neoverse N1 platform as envisioned by Arm, aiming for nothing less than disruption of the datacentre market and making Arm servers a competitive reality. The chip is not only  able to compete in terms of raw throughput thanks to its 64 physical cores in a single socket, but it also manages to showcase competitive single-thread performance, keeping in line with AMD and Intel systems in the market.

The Amazon chip isn’t perfect, we definitely would have wanted to see more L3 cache integrated into the mesh interconnect as the 32MB does seem quite mediocre for handling 64 cores, and the chip does suffer from this aspect in terms of its performance scaling in memory heavy workloads. Only Amazon knows if this is a real-world bottleneck for the chip and the kind of workloads that are typical in the cloud.

Performance wise, there’s a big empty outline of an elephant in the room that's been missing from our data today, and that’s AMD’s new EPYC2 Rome processors. AMD has showed it had been able to vastly scale performance and do away with a lot of the limitations presented by the first generation EPYC processors that we saw today. Even if we can somewhat estimate the performance that Rome would represent against the Graviton2, we don’t have any idea of what kind of pricing Amazon will be launching the new c5a type instances at.

In terms of value, the Graviton2 seemingly ends up with top grades and puts the competition to shame. This aspect not only will be due to the Graviton2’s performance and efficiency, but also due to the fact that suddenly Amazon is now vertically integrated for its EC2 hardware platforms. If you’re an EC2 customer today, and unless you’re tied to x86 for whatever reason, you’d be stupid not to switch over to Graviton2 instances once they become available, as the cost savings will be significant.

What does this mean for non-Amazon users? Well the Arm server has become a reality, and companies such as Ampere and their new Altra server chips are trying to quickly follow up with the same recipe as the Graviton2 and offer similar ready-made meals for the non-Amazons of the world. These chips however will have to compete with AMD’s Rome, and later in the year the new Milan, which won’t be easy. Meanwhile Intel doesn’t seem to be a likely competitor in the short term while they’re attempting to resolve their issues.

Long-term, things are looking bright for the Arm ecosystem. Arm themselves are aiming to maintain a yearly 20-25% compound annual growth rate for performance, and Ampere already stated they’re looking for yearly hardware refreshes. We don’t know Amazon’s plans, but I imagine it’ll be similar, if not skipping some generations. Around the 2022 timeframe we should see Matterhorn-based products, Arm’s new Very Large™ CPU microarchitecture which should again accelerate things dramatically. In a similar sense, the newly founded Nuvia has lofty goals for their entrance into the datacentre market, and they do have the design talent with a track record to possibly deliver, in a few years’ time.

The Graviton2 is a great product, and we’re looking forward to see more such successful designs from the Arm ecosystem.

Cost Analysis - An x86 Massacre
Comments Locked


View All Comments

  • Duncan Macdonald - Tuesday, March 10, 2020 - link

    The Apple CPU cores are larger and more power hungry when loaded hard than the CPU cores on the N1. A 64 CPU chip with the high performance cores from the Apple A13 would consume far more power than the N1 and would be quite a bit larger than the N1. The Apple A13 chip (in the iPhone 11) is suited for intermittent load not the sustained use that server type chips such as the N1 have to deal with.
  • arashi - Wednesday, March 11, 2020 - link

  • edsib1 - Tuesday, March 10, 2020 - link

    You are using an Epyc processor that is nearly 3 years old.

    Surely you should use this years model (or a 64-corer threadripper if you dont have one)
  • vanilla_gorilla - Wednesday, March 11, 2020 - link

    You should consider reading the article and then you would know exactly why they are using those CPU.
  • Kamen Rider Blade - Tuesday, March 10, 2020 - link

    The benchmarks feel incomplete. Why don't you have a 64-core Zen2 based processor in it to compare?

    Even the ThreadRipper 64-core would be something.

    But not having AMD's latest Server grade CPU in your benchmarks really feels like you're doing a disservice to your readers, especially since we've seen your previous reviews with the Zen 2 64 core monster.
  • Rudde - Wednesday, March 11, 2020 - link

    Read the article! Rome is mentioned over five times. In short, Amazon doesn't offer Rome instances yet and Anandtech will update this article once they do.
  • Sahrin - Tuesday, March 10, 2020 - link

    I may be remembering incorrectly, but doesn't Gen 1 Epyc have the same cache tweaks as Zen+ (ie, Epyc 7001 series is based on Zen+, not Zen)?
  • Rudde - Wednesday, March 11, 2020 - link

    They have same optimisations as first gen Zen APUs, i.e. Ryzen mobile 2xxx. Zen+ is a further developed architecture, albeit without further cache tweaks.
    The cache tweaks in question were meant to be included in the origina Zen, but didn't make it in time. As such one could argue that first gen Ryzen desktop is not full Zen (1), but a preview.
  • Sahrin - Tuesday, March 10, 2020 - link

    The fact that Amazon refused to grant access to Rome-based instances tells you everything you need to know. Graviton competes with Zen and Xeon, but is absolutely smoked by Zen 2 in both absolute terms and perf/watt.

    It's a shame to see Amazon hide behind marketing bullshit to make its products seem relevant.
  • rahvin - Thursday, March 12, 2020 - link

    Don't be silly. Amazon buys processors in the thousands. There is no way AMD could have supplied enough Rome CPU's to Amazon to load up an instance at each of their locations in the time Rome has been for sale.

    It typical takes about 6 months before Amazon gets instances online because AMD/Intel aren't going to give Amazon the entire production run for the first 3 months. They've got about 20 data centers and you'd probably need several hundered per data center to bring an instance up.

    Consider the cost and scale of building that out before you criticize them for not having the latest and greatest released a month a go. Rome hasn't been available to actually purchase for very long and the Cloud providers get special models and AMD still needs to supply everyone else as well.

Log in

Don't have an account? Sign up now