AMD Found An Issue, for +25-50 MHz

Of course, with Roman’s dataset hitting the internet with its results, a number of outlets reported on it and a lot of people were in a spin. It wasn’t long for AMD to have a response, issued in the form of a blog post. I’m going to take bits and pieces here from what is relevant, starting with the acknowledgement that a flaw was indeed found:

As we noted in this blog, we also resolved an issue in our BIOS that was reducing maximum boost frequency by 25-50MHz depending on workload. We expect our motherboard partners to make this update available as a patch in two to three weeks. Following the installation of the latest BIOS update, a consumer running a bursty, single threaded application on a PC with the latest software updates and adequate voltage and thermal headroom should see the maximum boost frequency of their processor.

AMD acknowledged that they had found a bug in their firmware that was reducing the maximum boost frequency of their CPUs by 25-50 MHz. If we take Roman’s data survey, adding 50 MHz to every value would push all the averages and modal values for each CPU above the turbo frequency. It wouldn’t necessarily help the users who were reporting 200-300 MHz lower frequencies, to which AMD had an answer there:

Achieving this maximum boost frequency, and the duration of time the processor sits at this maximum boost frequency, will vary from PC to PC based on many factors such as having adequate voltage and current headroom, the ambient temperature, installing the most up-to-date software and BIOS, and especially the application of thermal paste and the effectiveness of the system/processor cooling solution.

As we stated at the AMD Turbo section of this piece, the way that AMD implements its turbo is different, and it does monitor things like power delivery, voltage and current headroom, and will adjust the voltage/frequency based on the platform in use. AMD is reiterating this, as I expected they would have to.

AMD in the blog post mentioned how it had changed its firmware (1003AB) in August for system stability reasons, categorically denying that it was for CPU longevity reasons, saying that the latest firmware (1003ABBA) improves performance and does not affect longevity either.

The way AMD distributes its firmware is through AGESA (AMD Generic Encapsulated Software Architecture). The AGESA is essentially a base set of firmware and library files that gets distributed to motherboard vendors who then apply their own UEFI interfaces on top. The AGESA can also include updates for other parts of the system, such as the System Management Unit, that have their own firmware related to their operation. This can make updating things a bit annoying – motherboard vendors have been known to mix and match different firmware versions, because ultimately at the end of the day the user ends up with ‘BIOS F9’ or something similar.

AMD’s latest AGESA at the time of writing is 1003ABBA, which is going through motherboard vendors right now. MSI and GIGABYTE have already launched beta BIOS updates with the new AGESA, and should be pushing it through to stable versions shortly, as should be ASUS and ASRock.

Some media outlets have already tested this new firmware, and in almost all circumstances, are seeing a 25-50 MHz uplift in the way that the frequency was being reported. See the Tom’s Hardware article as a reference, but in general, reports are showing a 0.5-2.0% increase in performance in single thread turbo limited tests.

I Have a Ryzen 3000 CPU, Does It Affect Me?

The short answer is that if you are not overclocking, then yes. When your particular motherboard has a BIOS update for 1003ABBA, then it is advised to update. Note that updating a BIOS typically means that all BIOS settings are lost, so keep a track in case the DRAM needs XMP enabled or similar.

Users that are keeping their nose to the grindstone on the latest AMD BIOS developments should know the procedure.

The Future of Turbo

It would be at this point that I might make commentary that single thread frequency does not always equal performance. As part of the research for this article, I learned that some users believe that the turbo frequency listed on the box believe it is the all-core turbo frequency, which just goes to show that turbo still isn’t well understood in name alone. But as modern workloads move to multi-threaded environments with background processes, the amount of time spent in single-thread turbo is being reduced. Ultimately we’re ending up with a threading balance between background processes and immediate latency sensitive requirements.

At the end of the day, AMD identifying a 25-50 MHz deficit and fixing it is a good thing. The number of people for whom this is a critical boundary that enables a new workflow though, is zero. For all the media reports that drummed up AMD not hitting published turbo speeds as a big thing, most of those reporters ended up by contrast being very subdued with AMD’s fix. 2% on the single core turbo frequency hasn’t really changed anyone in this instance, despite all the fuss that was made.

I wrote this piece just to lay some cards on the table. The way AMD is approaching the concept of Turbo is very different to what most people are used to. The way AMD is binning its CPUs on a per-core basis is very different to what we’re used to. With all that in mind, peak turbo frequencies are not covered by warranty and are not guaranteed, despite the marketing material that goes into them. Users who find that a problem are encouraged to vote with their wallet in this instance.

Moving forward, I’m going to ask our motherboard editor, Gavin, to start tracking peak frequencies with our WSL tool. Because we’re defining the workload, our results might end up different to what users are seeing with their reporting tools while running CineBench or any other workload, but it can offer the purest result we can think of.

Ultimately the recommendations we made in our launch day Ryzen review still stand. If anything, if we had experienced some frequency loss, some extra MHz on the ST tests would push the parts slightly up the graph. Over time we will be retesting with the latest BIOS updates.

Detecting Turbo: Microseconds vs. Milliseconds
Comments Locked

144 Comments

View All Comments

  • ajlueke - Tuesday, September 17, 2019 - link

    More specifically, I was referring to this test from the article.

    "Because of the new binning strategy – and despite what some of AMD's poorly executed marketing material has been saying – PBO hasn't been having the same effect, and users are seeing little-to-no benefit. This isn’t because PBO is failing, it’s because the CPU out of the box is already near its peak limits, and AMD’s metrics from manufacturing state that the CPU has a lifespan that AMD is happy with despite being near silicon limits."

    What silicon limits exactly? AMDs marketing material has always indicated that a CPU will boost until it reaches either the PPT, TDC, EDC, or thermal limits. If none of those are met, it will boost until Fmax, which it simply will not exceed. Now, in a single threaded workload, the user is almost never at a PPT,TDC, EDC or thermal limit, and seem to be just shy of Fmax anyway. Now, if the user enables the auto-oc feature and extends Fmax by 100, 150 or 200MHz...nothing happens. The identical clockspeed and performance are observed.
    I see the same thing happen in multicore on my 3900X. I normally hits the EDC and PPT limits under standard boosting. If I remove them, with precision boost overdrive, it does boost higher, but not by much. It again seems to stop a certain point. Again, EDC, TDC and PPT motherboard limits are not met, I am certainly not at Fmax, and the chip is under 70C, but it stops nonetheless. Nothing I can do makes it boost further.
    "The Stilt", seems to mention the silicon fitness monitoring feature (FIT) in his "Matisse Strictly Technical" post on overclock.net. FIT appears to be a specific voltage limit for high and low current the CPU cannot exceed. This has never been included in AMDs documentation, and would help explain why the processor's stop boosting when according to AMD's own documentation, they should keep on going. So what exactly is this feature, and how does it work? I think that answer would do a great deal to alleviate user confusion.
  • mabellon - Tuesday, September 17, 2019 - link

    >> "To a certain extent, Intel already kind of does this with its Turbo Boost Max 3.0 processors... [the] difference between the two companies is that AMD has essentially applied this idea chip-wide and through its product stack, while Intel has not, potentially leaving out-of-the-box performance on the table."

    What does this mean? What has Intel not done that AMD has done? Both have variable max frequency per core. Both expose this concept to the OS. Both rely on the same Window scheduler. What are you alluding to is different here?

    It seems to me that Intel's HEDT platform with Turbo 3.0 is very much similar to AMD's implementation in the sense of having certain cores run faster. @Ian how is performance left on the table for Intel here? (Intel non HEDT is obviously stuck on Turbo 2.0 which is at a disadvantage)
  • Targon - Tuesday, September 17, 2019 - link

    The majority of Intel chips are multiplier locked, so there isn't any real overclocking ability to speak of. It is only the k chips that users can overclock. AMD on the other hand, has PBO which is more advanced when it comes down to it.
  • edzieba - Thursday, September 19, 2019 - link

    "What does this mean? What has Intel not done that AMD has done?"

    Intel picks the maximum 'turbo' bin as the lowest that any core can achieve. AMD picks their maximum boost bin as the highest that any single core could achieve. 'Turbo 3.0' pre-selected two cores that were able to clock above the all-core turbo bin and allowed them to clock higher for lightly threaded workloads.
  • Jaxidian - Tuesday, September 17, 2019 - link

    Is this WSL tool available for us to use? I'd love to have a better view of what speeds my cores could hit with a tool like this. In fact, I'd probably use it to map out all 12 cores (disabling 11 of them at a time). Obviously even that wouldn't quite give the whole picture, but it would be an interesting baseline map to have for my 3900x chip.
  • Jaxidian - Tuesday, September 17, 2019 - link

    I got my "no" answer here: https://twitter.com/IanCutress/status/117401405985...

    "It's a custom kludgy thing for internal use."
  • MFinn3333 - Tuesday, September 17, 2019 - link

    I miss the old days when I would just push the Turbo frequency on my 286 and the CPU would go from 10MHz to 12MHz. Sure occassionally chip poppped off from the Glue but it was totally worth it to play Dune 2.
  • sing_electric - Tuesday, September 17, 2019 - link

    "Turbo, in this instance, is aspirational. We typically talk about things like ‘a 4.4 GHz Turbo frequency’, when technically we should be stating ‘up to 4.4 GHz Turbo frequency’."

    This is true, but EXACTLY the problem. The marketing teams at AMD, Intel and everyone else KNOW that when you see "3.6 GHz / 4.5 GHZ Turbo" written on a box, your eye falls to the second, larger number, and that's what sticks in your head.

    Why should the consumer know that some of the numbers on the box (core count, base freq) are guaranteed, but some (turbo) aren't? That makes no sense and is borderline deceptive. And this doesn't just matter to the fairly small, tech savvy group of people who buy a processor alone in a box - here's how Dell lists the processor on its base config XPS 13 laptop when you go to "Tech Specs & Customization"

    "8th Generation Intel® Core™ i5-8265U Processor (6M Cache, up to 3.9 GHz, 4 cores)"

    Dell doesn't even bother LISTING the base frequency, even when you click to get more detail - how's a consumer supposed to gauge how fast their processor is? (To their credit, Apple, HP and Lenovo all list base frequency and "up to" the turbo).

    Turbo is a great technology for getting the most out of limited silicon, but both AMD and Intel are, while not QUITE being untruthful, certainly trying to put their products in as good of a light as possible.
  • DigitalFreak - Tuesday, September 17, 2019 - link

    That's marketing for you. Step as close to the "deceive the customer" line as possible without getting sued.
  • Jaxidian - Tuesday, September 17, 2019 - link

    I'm looking at the retail box for my 3900x right now. The only thing it says about frequencies is "4.6 GHz Max Boost, 3.8 GHz Base". There is no "up to" verbiage anywhere on the box. From a FTC advertising standpoint, the 4.6GHz should be guaranteed even if only under nuanced "limited single-core" and "with specific but reasonable motherboard, cooling, and software" scenarios.

    While this is a very good article and I generally have very few issues with AMD's new approach here, I'm of the belief that legally, a 3900x should be guaranteed to hit 4.6GHz when in a specific-yet-real-world scenario. I don't mean $100 mobos with $25 coolers should be able to hit it. But a better-than-budget x570 motherboard using the stock cooler with proper updates on a supported OS should absolutely hit 4.6GHz with certain loads. Otherwise, I think there's a real legal issue here.

    All this said, I am now seeing 4.6GHz from time to time on my 3900x with ABBA on my x570 Aorus Master, so we're good here. Never saw higher than 4.575 before ABBA.

Log in

Don't have an account? Sign up now