For those that keep a close eye on consumer hardware, AMD recently has been involved in a minor uproar with some of its most vocal advocates about the newest Ryzen 3000 processors. Some users are reporting turbo frequencies much lower than advertised, and a number of conflicting AMD partner posts have generated a good deal of confusion. AMD has since posted an update identifying an issue and offering a fix, but part of all of this comes down to what turbo means and how AMD processors differ from Intel. We’ve been living on Intel’s definitions of perceived standards for over a decade, so it’s a hard nut to crack if everyone assumes there can be no deviation from what we’re used to. In this article, we’re diving at those perceived norms, to shed some light on how these processors work.

A Bit of Context

Since the launch of Zen 2 and the Ryzen 3000 series, depending on which media outlet you talk to, there has been a peak turbo issue with the new hardware. This turbo frequency issue has been permeating in the ecosystem since Zen 2 was launched, with popular outlets like Gamers Nexus noting that on certain chips, the advertised turbo frequency was only achieved under extreme cooling conditions. For other outlets, being within 50 MHz of the peak turbo frequency has been considered chip-to-chip variation, or a function of early beta firmware. A wide array of people put varying amounts of weight behind this, from conspiracy to not being bothered about it at all.

However, given recent articles by some press, as well as some excellent write-ups by Paul Alcorn over at Tom’s Hardware*, we saw that the assumed public definitions of processor performance actually differs from Intel to AMD. What we used as the default standard definitions, which are based on Intel’s definitions, are not the same under AMD, which is confusing everyone. No one likes a change to the status quo, and even with articles out there offering a great breakdown of what's going on, a lot of the general enthusiast base is still trying to catch up to all of the changes.

This confusion – and the turbo frequency discussion in general – were then brought to the fore of news in the beginning of September 2019. AMD, in a two week span, had several things happen essentially all at once.

  1. Popular YouTuber der8aur performed a public poll of frequency reporting that had AMD in a very bad light, with some users over 200 MHz down on turbo frequency,
  2. The company settled for $12.1m in a lawsuit about marketing Bulldozer CPUs,
  3. Intel made some seriously scathing remarks about AMD performance at a trade show,
  4. AMD’s Enterprise marketing being comically unaware of how its materials would be interpreted.

Combined with all of the drama that the computing industry can be known for – and the desire for an immediate explanation, even before the full facts were in – made for a historically bad week for AMD. Of course, we’ve reported on some of these issues, such as the lawsuit because they are interesting factoids to share. Others we ignored, such as (4) for a failure to see anything other than an honest mistake given how we know the individuals behind the issues, or the fact that we didn’t report on (3) because it just wasn’t worth drawing attention to it.

What has driven the discussion about peak turbo has come to head because of (1). Der8auer’s public poll, taken from a variety of users with different chips, different motherboards, different cooling solutions, different BIOS versions, still showed a real-world use case of fewer than 6% of 3900X users were able to achieve AMD’s advertised turbo frequency. Any way you slice it, without context, that number sounds bad.

Meanwhile, in between this data coming out and AMD’s eventual response, a couple of contextual discrepancies happened between AMD’s partner employees and experts in the field via forum posts. This greatly exacerbated the issue, particularly among the vocal members of the community. We’ll go into detail on those later.

AMD’s response, on September 10th, was a new version of its firmware, called AGESA 1003-ABBA. This was released along with blog post that detailed that a minor firmware issue was showing 25-50 MHz drop in turbo frequency was now fixed.

Naturally, that doesn’t help users who are down 300 MHz, but it does come down to how much the user understands how AMD’s hardware works. This article is designed to shed some light on the timeline here, as well as how to understand a few nuances of AMD's turbo tech, which are different to what the public has come to understand from Intel’s use of specific terms over the last decade.

*Paul’s articles on this topic are well worth a read:
Ryzen 3000, Not All Cores Are Created Equal
Investigating Intel’s Claims About Ryzen Reliability
Testing the Ryzen 3000 Boost BIOS Fix

This Article

In this article we will cover:

  • Intel’s Definition of Turbo
  • AMD’s Definition of Turbo
  • Why AMD is Binning Differently to Intel, relating to Turbo and OC
  • A Timeline of AMD’s Ryzen 3000 Turbo Reporting
  • How to Even Detect Turbo Frequencies
  • AMD's Fix
Defining Turbo, Intel Style
Comments Locked

144 Comments

View All Comments

  • ajlueke - Tuesday, September 17, 2019 - link

    More specifically, I was referring to this test from the article.

    "Because of the new binning strategy – and despite what some of AMD's poorly executed marketing material has been saying – PBO hasn't been having the same effect, and users are seeing little-to-no benefit. This isn’t because PBO is failing, it’s because the CPU out of the box is already near its peak limits, and AMD’s metrics from manufacturing state that the CPU has a lifespan that AMD is happy with despite being near silicon limits."

    What silicon limits exactly? AMDs marketing material has always indicated that a CPU will boost until it reaches either the PPT, TDC, EDC, or thermal limits. If none of those are met, it will boost until Fmax, which it simply will not exceed. Now, in a single threaded workload, the user is almost never at a PPT,TDC, EDC or thermal limit, and seem to be just shy of Fmax anyway. Now, if the user enables the auto-oc feature and extends Fmax by 100, 150 or 200MHz...nothing happens. The identical clockspeed and performance are observed.
    I see the same thing happen in multicore on my 3900X. I normally hits the EDC and PPT limits under standard boosting. If I remove them, with precision boost overdrive, it does boost higher, but not by much. It again seems to stop a certain point. Again, EDC, TDC and PPT motherboard limits are not met, I am certainly not at Fmax, and the chip is under 70C, but it stops nonetheless. Nothing I can do makes it boost further.
    "The Stilt", seems to mention the silicon fitness monitoring feature (FIT) in his "Matisse Strictly Technical" post on overclock.net. FIT appears to be a specific voltage limit for high and low current the CPU cannot exceed. This has never been included in AMDs documentation, and would help explain why the processor's stop boosting when according to AMD's own documentation, they should keep on going. So what exactly is this feature, and how does it work? I think that answer would do a great deal to alleviate user confusion.
  • mabellon - Tuesday, September 17, 2019 - link

    >> "To a certain extent, Intel already kind of does this with its Turbo Boost Max 3.0 processors... [the] difference between the two companies is that AMD has essentially applied this idea chip-wide and through its product stack, while Intel has not, potentially leaving out-of-the-box performance on the table."

    What does this mean? What has Intel not done that AMD has done? Both have variable max frequency per core. Both expose this concept to the OS. Both rely on the same Window scheduler. What are you alluding to is different here?

    It seems to me that Intel's HEDT platform with Turbo 3.0 is very much similar to AMD's implementation in the sense of having certain cores run faster. @Ian how is performance left on the table for Intel here? (Intel non HEDT is obviously stuck on Turbo 2.0 which is at a disadvantage)
  • Targon - Tuesday, September 17, 2019 - link

    The majority of Intel chips are multiplier locked, so there isn't any real overclocking ability to speak of. It is only the k chips that users can overclock. AMD on the other hand, has PBO which is more advanced when it comes down to it.
  • edzieba - Thursday, September 19, 2019 - link

    "What does this mean? What has Intel not done that AMD has done?"

    Intel picks the maximum 'turbo' bin as the lowest that any core can achieve. AMD picks their maximum boost bin as the highest that any single core could achieve. 'Turbo 3.0' pre-selected two cores that were able to clock above the all-core turbo bin and allowed them to clock higher for lightly threaded workloads.
  • Jaxidian - Tuesday, September 17, 2019 - link

    Is this WSL tool available for us to use? I'd love to have a better view of what speeds my cores could hit with a tool like this. In fact, I'd probably use it to map out all 12 cores (disabling 11 of them at a time). Obviously even that wouldn't quite give the whole picture, but it would be an interesting baseline map to have for my 3900x chip.
  • Jaxidian - Tuesday, September 17, 2019 - link

    I got my "no" answer here: https://twitter.com/IanCutress/status/117401405985...

    "It's a custom kludgy thing for internal use."
  • MFinn3333 - Tuesday, September 17, 2019 - link

    I miss the old days when I would just push the Turbo frequency on my 286 and the CPU would go from 10MHz to 12MHz. Sure occassionally chip poppped off from the Glue but it was totally worth it to play Dune 2.
  • sing_electric - Tuesday, September 17, 2019 - link

    "Turbo, in this instance, is aspirational. We typically talk about things like ‘a 4.4 GHz Turbo frequency’, when technically we should be stating ‘up to 4.4 GHz Turbo frequency’."

    This is true, but EXACTLY the problem. The marketing teams at AMD, Intel and everyone else KNOW that when you see "3.6 GHz / 4.5 GHZ Turbo" written on a box, your eye falls to the second, larger number, and that's what sticks in your head.

    Why should the consumer know that some of the numbers on the box (core count, base freq) are guaranteed, but some (turbo) aren't? That makes no sense and is borderline deceptive. And this doesn't just matter to the fairly small, tech savvy group of people who buy a processor alone in a box - here's how Dell lists the processor on its base config XPS 13 laptop when you go to "Tech Specs & Customization"

    "8th Generation Intel® Core™ i5-8265U Processor (6M Cache, up to 3.9 GHz, 4 cores)"

    Dell doesn't even bother LISTING the base frequency, even when you click to get more detail - how's a consumer supposed to gauge how fast their processor is? (To their credit, Apple, HP and Lenovo all list base frequency and "up to" the turbo).

    Turbo is a great technology for getting the most out of limited silicon, but both AMD and Intel are, while not QUITE being untruthful, certainly trying to put their products in as good of a light as possible.
  • DigitalFreak - Tuesday, September 17, 2019 - link

    That's marketing for you. Step as close to the "deceive the customer" line as possible without getting sued.
  • Jaxidian - Tuesday, September 17, 2019 - link

    I'm looking at the retail box for my 3900x right now. The only thing it says about frequencies is "4.6 GHz Max Boost, 3.8 GHz Base". There is no "up to" verbiage anywhere on the box. From a FTC advertising standpoint, the 4.6GHz should be guaranteed even if only under nuanced "limited single-core" and "with specific but reasonable motherboard, cooling, and software" scenarios.

    While this is a very good article and I generally have very few issues with AMD's new approach here, I'm of the belief that legally, a 3900x should be guaranteed to hit 4.6GHz when in a specific-yet-real-world scenario. I don't mean $100 mobos with $25 coolers should be able to hit it. But a better-than-budget x570 motherboard using the stock cooler with proper updates on a supported OS should absolutely hit 4.6GHz with certain loads. Otherwise, I think there's a real legal issue here.

    All this said, I am now seeing 4.6GHz from time to time on my 3900x with ABBA on my x570 Aorus Master, so we're good here. Never saw higher than 4.575 before ABBA.

Log in

Don't have an account? Sign up now