DirectX 8 Performance

Below you can see our plot of the DirectX 8 components.

GF4 Ti4200 64 250 500 4 2 2 128 2000 113 7629 100.0% 100.0% 100.0% 100.0%
DirectX 8 and 8.1
GF4 Ti4800 300 650 4 2 2 128 2400 135 9918 120.0% 130.0% 120.0% 123.3%
GF4 Ti4600 300 600 4 2 2 128 2400 135 9155 120.0% 120.0% 120.0% 120.0%
GF4 Ti4400 275 550 4 2 2 128 2200 124 8392 110.0% 110.0% 110.0% 110.0%
GF4 Ti4800 SE 275 550 4 2 2 128 2200 124 8392 110.0% 110.0% 110.0% 110.0%
GF4 Ti4200 8X 250 514 4 2 2 128 2000 113 7843 100.0% 102.8% 100.0% 100.9%
GF4 Ti4200 64 250 500 4 2 2 128 2000 113 7629 100.0% 100.0% 100.0% 100.0%
GF4 Ti4200 128 250 444 4 2 2 128 2000 113 6775 100.0% 88.8% 100.0% 96.3%
8500 275 550 4 2 1 128 2200 69 8392 110.0% 110.0% 61.1% 93.7%
9100 Pro 275 550 4 2 1 128 2200 69 8392 110.0% 110.0% 61.1% 93.7%
9100 250 500 4 2 1 128 2000 63 7629 100.0% 100.0% 55.6% 85.2%
8500 LE 250 500 4 2 1 128 2000 63 7629 100.0% 100.0% 55.6% 85.2%
9200 Pro 300 600 4 1 1 128 1200 75 9155 60.0% 120.0% 66.7% 82.2%
GF3 Ti500 240 500 4 2 1 128 1920 54 7629 96.0% 100.0% 48.0% 81.3%
9000 Pro 275 550 4 1 1 128 1100 69 8392 55.0% 110.0% 61.1% 75.4%
GeForce 3 200 460 4 2 1 128 1600 45 7019 80.0% 92.0% 40.0% 70.7%
9000 250 400 4 1 1 128 1000 63 6104 50.0% 80.0% 55.6% 61.9%
9200 250 400 4 1 1 128 1000 63 6104 50.0% 80.0% 55.6% 61.9%
GF3 Ti200 175 400 4 2 1 128 1400 39 6104 70.0% 80.0% 35.0% 61.7%
9250 240 400 4 1 1 128 960 60 6104 48.0% 80.0% 53.3% 60.4%
9200 SE 200 333 4 1 1 64 800 50 2541 40.0% 33.3% 44.4% 39.2%
* RAM clock is the effective clock speed, so 250 MHz DDR is listed as 500 MHz.
** Textures/Pipeline is the maximum number of texture lookups per pipeline.
*** NVIDIA says their GFFX cards have a "vertex array", but in practice it generally functions as indicated.
**** Single-texturing fill rate = core speed * pixel pipelines
+ Multi-texturing fill rate = core speed * maximum textures per pipe * pixel pipelines
++ Vertex rates can vary by implementation. The listed values reflect the manufacturers' advertised rates.
+++ Bandwidth is expressed in actual MB/s, where 1 MB = 1024 KB = 1048576 Bytes.
++++ Relative performance is normalized to the GF4 Ti4200 64, but these values are at best a rough estimate.

No weighting has been applied to the DirectX 8 charts, and performance in games generally falls in line with what is represented in the above chart. Back in the DirectX 8 era, NVIDIA really had a huge lead in performance over ATI. The Radeon 8500 was able to offer better performance than the GeForce 3, but that lasted all of two months before the launch of the GeForce 4 Ti line. Of course, many people today continue running GeForce4 Ti cards with few complaints about performance - only high quality rendering modes and DX9-only applications are really forcing people to upgrade. For casual gamers, finding a used GF4Ti card for $50 or less may be preferable to buying a low-end DX9 card. It really isn't until the FX5700 Ultra and FX5600 Ultra that the GF4Ti cards are outclassed, and those cards still cost well over $100 new.

ATI did have one advantage over NVIDIA in the DirectX 8 era, however. They worked with Microsoft to create an updated version of DirectX; version 8.1. This added support for some "advanced pixel shader" effects, which brought the Pixel Shader version up to 1.4. There wasn't anything that could be done in DX8.1 that couldn't be done with DX8.0, but several operations could be done in one pass instead of two passes. Support for DirectX 8 games was very late in coming, however, and support for ATI's extensions was, if possible, even more so. There are a few titles which now support the DX8.1 extensions, but even then the older DX8.1 ATI cards are generally incapable of running these games well.

It is worth noting that the vertex rates on the NVIDIA cards are calculated as 90% of the clock speed times the number of vertex pipelines, divided by four. Why is that important? It's not, really, but on the FX and GF6 series of cards, NVIDIA uses clock speed times vertex pipelines divided by four for the claimed vertex rate. It could be that architectural improvements made the vertex rate faster. Such detail was lacking on the ATI side of things, although 68 million vertices/second for the 8500 was claimed in a few places, which matches the calculation used on NVIDIA's DX9 cards. You don't have to look any further than such benchmarks as 3DMark01 to find that these theoretical maximum are never reached, of course - even with one light source and no textures, the high polygon count scene doesn't come near the claimed rate.

Number nine… Number nine… Seven, seven for n-n-no tomorrow
POST A COMMENT

43 Comments

View All Comments

  • MODEL 3 - Wednesday, September 8, 2004 - link

    A lot of mistakes for a professional hardware review site the size of Anandtech.I will only mention the de facto mistakes since I have doubts for more.I am actually surprised about the amount of mistakes in this article.I mean since I live in Greece (not the center of the world in 3d technology or hardware market) I always thought that the editors in the best hardware review sites of the world (like Anandtech) have at least the basic knowledge related to technology and they make research and doublecheck if their articles are correct.I mean they get paid, right?I mean if I can find so easily their mistakes (I have no technology related degree although I was purchase and product manager in the best Greek IT companies) they must be doing something very,very wrong indeed.Now onto the mistakes:
    ATI :
    X700 6 vertex pipelines: Actually this is no mistake since I have no information about this new part but it seems strange if X700 will have the same (6) vertex pipelines as X800XT.I guess more logical would be half as many (3) (like 6800Ultra-6600GT) or double as many as X600 (4).We will see.
    Radeon VE 183/183: The actual speed was 166/166SDR 128bit for ATI parts and as low as 143/143 for 3rd party bulk part
    Radeon 7000 PCI 166/333 The actual speed was 166/166SDR 128bit for ATI parts and as low as 143/143 for 3rd party bulk part (note that anandtech suggests 166DDR and the correct is 166 SDR)
    Radeon 7000 AGP 183/366 32/64(MB): The actual speed was 166/166SDR for ATI parts and as low as 143/143 for 3rd party bulk part (note that anandtech suggests 166DDR and the correct is 166 SDR) also at launch and for a whole year (if ever) it didn't exist a 64MB part
    Radeon 7200 64bit ram bus: The 7200 was exactly the same as Radeon DDR so the ram bus width was 128bit
    ATI has unofficial DX 9 with SM2.0b support: Actually ATI has official DX 9.0b support and Microsoft certified this "in between" version of DX9.When they enable their 2.0b feutures they don't fail WHQL compliance since 2.0b is official microsoft version (get it?).Feutures like 3Dc normal map compression are activated only in open GL mode but 3Dc compression is not part of DX9.0b.
    NVIDIA:
    GF 6800LE with 8 pixel pipelines has according to Anandtech 5 vertex pipelines: Actually this is no mistake since I have no information about this part but since 6800GT/Ultra is built with four (4) quads with 4 pixel pipelines each isn't more logical the 6800LE with half the quads to have half the pixel (8) AND half (3) the vertex pipelines?
    GFFX 5700 3 vertex pipelines: GFFX 5700 has half the number of pixel AND vertex pipelines of 5900 so if you convert the vertex array of 5900 into 3 vertex pipes (which is correct) then the 5700 would have 1,5
    GF4 4600 300/600: The actual speed is 300/325DDR 128bit
    GF2MX 175/333: The actual speed is 175/166SDR 128bit
    GF4MX series 0.5 vertex shader: Actually the GF4MX series had twice the amount of vertex shaders of GF2 so the correct number of vertex shader is 1
    According to Anandtech, the GF3 cards only show a slight performance increase over the GF2 Ultra, and that is only in more recent games : Actually GF3 (Q1 01) was based in 0,18 nm technology and the yields was extremely low.In reality GF3 parts in acceptable quantity came in Q3 01 with GF3Ti series 0,15 nm technology .If you check the performance in open GL games at and after Q3 01 and DX8 games at and after Q3 02 you will clearly see GF3 to have double the performance of GF2 clock for clock (GF3Ti500 Vs GF2Ultra)

    Now, the rest of the article is not bad and I also appreciate the effort.
    Reply
  • JarredWalton - Wednesday, September 8, 2004 - link

    Sorry, ViRGE - I actually took your suggestion to heart and updated page 3 initially, since you are right about it being more common. However, I forgot to modify the DX7 performance charts. There are probably quite a few other corrections that should be made as well.... Reply
  • ViRGE - Tuesday, September 7, 2004 - link

    Jared, like I said, you're technically right about how the GF2 MX could be outfitted with either 128bit SDR or 64bit SDR/DDR, but you said it yourself that the cards were mostly 128bit SDR. Obviously any change won't have an impact, but in my humble opinion, it would be best to change the GF2 MX to better represent what historically happened, so that if someone uses this chart as a reference for a GF2 MX, they're more likely to be getting the "right" data. Reply
  • BigLan - Tuesday, September 7, 2004 - link

    Good job with the article

    Love the office reference...

    "Can I put it in my mouth?"
    Reply
  • darth_beavis - Tuesday, September 7, 2004 - link

    Sorry, now it's suddenly working. I don't know what my problem is (but I'm sure it's hard to pronounce). Reply
  • darth_beavis - Tuesday, September 7, 2004 - link

    Actually it looks like none of them have labels. Is anandtech not mozilla compatible or something. Just use jpgs pleaz. Reply
  • darth_beavis - Tuesday, September 7, 2004 - link

    Why is there no descriptions for the columns on the graph on pg 2. Are just supposed to guess what the numbers mean? Reply
  • JarredWalton - Tuesday, September 7, 2004 - link

    Yes, Questar, laden with errors. All over the place. Thanks for pointing them out so that they could be corrected. I'm sure that took you quite some time.

    Seriously, though, point them out (other than omissions, as making a complete list of every single variation of every single card would be difficult at best) and we will be happy to correct them provided that they actually are incorrect. And if you really want a card included, send the details of the card, and we can add that as well.

    Regarding the ATI AIW (All In Wonder, for those that don't know) cards, they often varied from the clock and RAM speeds of the standard chips. Later models may have faster RAM or core speeds, while earlier models often had slower RAM and core speeds.
    Reply
  • blckgrffn - Tuesday, September 7, 2004 - link

    Questar - if you don't like it, leave. The article clearly stated its bounds and did a great job. My $.02 - the 7500 AIW is 64 meg DDR only, unsure of the speed however. Do you want me to check that out? Reply
  • mikecel79 - Tuesday, September 7, 2004 - link

    #22 The Geforce256 was released in October of 1999 so this is roughly the last 5 years of chips from ATI and Nvidia. If it were to include all other manufacturers it would be quite a bit longer.

    How about examples of this article being "laden or errors" instead of just stating it.
    Reply

Log in

Don't have an account? Sign up now