Competing Against Itself: 3.9 GHz Ice Lake-U on 10nm vs 4.9 GHz Comet Lake-U on 14nm

At the same time that Intel is releasing Ice Lake, we have confirmed from multiple sources that the company intends to release another generation of mobile products based on 14nm as well. This line of hardware, also called Intel 10th Gen Core, will be under the internal codename ‘Comet Lake’, and go after a similar power distribution to what Ice Lake will. There are a few differences in the design worth noting, and a big one that Intel will have a hard time organizing its marketing materials for.

The differences between Ice Lake-U and Comet Lake-U are set to be quite confusing. Leaks from various OEMs about upcoming products give us the following:

Ice Lake: The Core i7-1065G7

Ice Lake-U hardware, based on 10nm, will be given a ‘G’ in the product name, such as i7-1065G7. This breaks down such that

  • i7 = Core i7
  • 1065 = from the 10th Gen Core
  • 1065 = position ‘65’ relative to the rest of the other Ice lake processors,
  • G7 = ‘Graphics Level 7’, which we believe to be the highest.

Intel has stated that the Ice Lake-U hardware will come in at 9W, 15W, and 28W, as described in the previous pages, offering a highest turbo clock of 4.1 GHz, 64 EUs of Gen11 graphics, suitable for up to 1.1 TF of FP64 calculations. We suspect that the 4.1 GHz turbo frequency will be given to the 28W model following previous Intel launches, which means that the 15W part is likely to turbo to a few hundred MHz lower. Based on the Ice Lake plans we know, it seems that Intel is only targeting up to quad-core designs, but Ice Lake does support LPDDR4. Due to using the 10nm process, and with additional power refinements, Ice Lake hardware is expected to have longer a battery life compared to Comet Lake, although we will see this in product reviews through the year.

Comet Lake: The Core i7-10510U

Contrast this to Comet Lake-U, which is another round of processors based on 14nm. OEMs have given some light onto these processors, which should offer up to six cores. The naming of the processors follows on from the 8th Gen and 9th Gen parts, but is now under 10th Gen. This means that the Core i7-10510U breaks down as:

  • i7 = Core i7
  • 10510 = from the 10th Gen Core family,
  • 10510 =  position ‘51’ relative to the rest of Comet Lake
  • U = U-series processor, 15-28W

OEM listings have shown Comet Lake-U to turbo up to 4.9 GHz on the best quad-core processor, while we have seen 9th gen hardware hit 5.0 GHz in the larger H-series designs.

For a full side-by-side comparison:

Ice Lake-U vs Comet Lake-U
Ice Lake-U* AnandTech Comet Lake-U*
10+ Lithography '14nm class'
i7-1065G7 Example CPU Name i7-10510U
9W
15W
28W
TDP Options 15W
28W?
Same as 9th Gen?
Up to 4C Core Counts Up to 6C (expected)
Sunny Cove CPU Core Skylake+++
Up to 64 EUs
Gen11
GPU GT2 Core Up to 24 EUs
Gen9.5
3.9G (15W)
4.1G (28W)
Highest Turbo 4.9G? (15W)
5.0G+ ?
DDR4-3200
LPDDR4-3733
DDR DDR4-2667
LPDDR3-2133
AVX-512 AVX AVX2
*All details are not yet confirmed by Intel, but shown on partner websites/trusted sources

Should Intel go ahead with the naming scheme, it is going to offer a cluster of mixed messages, even to end-users that understand the naming scheme. For those that don’t, there might not be an obvious way to tell a 10th Gen Ice Lake system and a 10th Gen Comet Lake system part from just reading the specification sheet, especially if the vendor lists it just as ‘10th Gen Core i7’.

Intel is trying to mitigate some of this with Project Athena, which is a specification for premium 10th Gen designs. In order to meet Athena specifications, you technically don’t need to have an Ice Lake processor, but it definitely does help with the graphics and battery life targets. We’re unsure at this point if Intel will add in distinct labeling to Athena approved devices or not, but this might be one way to discern between the two. The other is to look for the letter: G means Ice Lake, U means Comet Lake.

So the question is about what matters most to users?

If you want raw CPU frequency and cores, then Comet Lake still has benefits there, even if we add on Intel’s expected ‘+18%’ IPC claims. It would all come down to how the turbo plays out in each device, and Intel states that it is working closer than ever before with its OEM partners to optimize for performance.

Ice Lake systems on the other hand are going to offer better graphics, are initially all likely to be under the Project Athena heading, and provide good connectivity (Wi-Fi 6), good displays, and really nice battery life for the class of device. Ice Lake is going to play more in the premium space too, at least initially, which might indicate that Comet Lake could be angled down the price bracket.

To be honest, we should have been expecting this. When Dr. Murthy Renduchintala joined Intel a couple of years ago, he was quoted as saying that he wants to disaggregate the ‘generation’ from the lithography, and offer a range of products within each generation. The fruits of that campaign started with the last round of mobile platforms, and the fruits of that endeavor will ripen through the Ice Lake/Comet Lake kerfuffle*. It’s going to be agonizing to tell users the difference, and even more so if OEMs do not list exact CPU specifications in their online listings. Intel has been so forthright with two distinct brands, the ‘X’ Gen Core and the Core ‘i7/i5/i3’ naming, that now both are ultimately meaningless to differentiate between two different types of products.

What should be the solution here? On initial thoughts, I would have pushed Ice Lake as an 11th Gen Core. It’s a new and exciting product, with a updated microarchitecture, better graphics, and leading edge lithography, along with Project Athena, it needs to be categorically separated from any other processors it might be competing with. It’s either that, or come up with an alternative naming scheme for it all. At this point, Intel is heading to a sticky mess, where it’s competing against itself and the casual user who hasn’t done meticulous research might not end up with the optimum product.

*To be clear, in the past, Intel used to separate product line microarchitecture based on the nth Gen Core designation. This does not happen anymore – a single ‘nth Gen Core’ brand might have 3+ different microarchitectures depending on what product you are looking at. It is ultimately confusing for any end-customers that have a passing knowledge of Intel’s product lines, and highly annoying to anyone with technical prowess discussing Intel’s products. I hate it. I understand it, but I hate it.

Performance Claims: +18% IPC vs. SKL, +47% Perf vs. BDW Intel’s Ice Lake and Sunny Cove: A Welcome Update, with Questions on Execution
Comments Locked

107 Comments

View All Comments

  • repoman27 - Tuesday, July 30, 2019 - link

    “Each CPU has 16 PCIe 3.0 lanes for external use, although there are actually 32 in the design but 16 of these are tied up with Thunderbolt support.”

    This isn’t quite right. The ICL-U/Y CPU dies do not expose any PCIe lanes externally. They connect to the ICL PCH-LP via OPI and the PCH-LP exposes up to 16 PCIe 3.0 lanes in up to 6 ports via HSIO lanes (which are shared with USB 3.1, SATA 6Gbps, and GbE functions). So basically no change over the 300 Series PCH.

    The integrated Thunderbolt 3 host controller may well have a 16-lane PCIe back end on-die, and I’m sure the CPU floorplan can accommodate 16 more lanes for PEG on the H and S dies, but that’s not what’s going on here.
  • voicequal - Friday, August 2, 2019 - link

    The SoC architecture shows a direct path for the Thunderbolt3 PCIe lanes to the CPU, with only USB2 going across OPI.. Whatever PCIe lanes are available on the PCH are in addition those available via TB3.

    https://images.anandtech.com/doci/14514/Blueprint%...
  • repoman27 - Tuesday, August 6, 2019 - link

    The Thunderbolt 3 controller is part of the CPU die. There are four PCIe 3.0 x4 root ports connected to the CPU fabric that feed the Thunderbolt protocol converters connected to the Thunderbolt crossbar switch (the Converged I/O Router block in that diagram). The CPU exposes up to three (for Y-Series) or four (for U-Series) Thunderbolt 3 ports. The only way you can leverage the PCIe lanes on the back-end of the integrated Thunderbolt 3 controller is via Thunderbolt.

    The PCH is a separate die on the same package as the CPU die. The two are connected via an OPI x8 link operating at 4 GT/s which is essentially the equivalent of a PCIe 3.0 x4 link. The PCH contains a sizable PCIe switch internally which connects to the back-ends of all of the included controllers and also provides up to 16 PCIe 3.0 lanes in up to 6 ports for connecting external devices. These 16 lanes are fed into a big mux which Intel refers to as a Flexible I/O Adapter (FIA) along with all the other high-speed signals supported by the PCH including USB 3.1, SATA 6Gbps, and GbE to create 16 HSIO lanes which are what is exposed by the SoC. So there are up to 16 PCIe lanes available from the Ice Lake SoC package, all of which are provided by the PCH die, but they come with the huge asterisk that they are exposed as HSIO lanes shared with all of the other high-speed signaling capabilities of the PCH and provisioned by a PCIe switch that effectively only has a PCIe 3.0 x4 connection to the CPU.

    This is not at all what Ian seemed to be describing, but it is the reality.

    And the USB 2.0 signals for the Thunderbolt 3 ports do indeed come from the PCH, but they do not cross the OPI, they're simply routed from the SoC package directly to the Thunderbolt port. The Thunderbolt 3 host controller integrated into the CPU includes a USB 3.1 xHCI/xDCI but does not include a USB 2.0 EHCI.
  • poohbear - Tuesday, July 30, 2019 - link

    I was looking at buying Dell's XPS 15.6" (7590 model), but with Project Athena laptops a few months away, i think i'll wait. Intel parts for solid reliability and unified drivers, and "4 hours of battery life with <30min of charging", those 2 on their own make the wait worth it for me!
  • repoman27 - Tuesday, July 30, 2019 - link

    “The connection to the chipset is through a DMI 3.0 x4 link...”

    Should be OPI x8 for U/Y Series.

    “...Ice Lake will support up to six ports of USB 3.1 (which is now USB 3.2 Gen 1 at 5 Gbps)...”

    They’re USB 3.1 Gen 2 ports, so it’s six USB 3.2 Gen 2 x 1 (10 Gbit/s) ports.
  • Roel9876 - Tuesday, July 30, 2019 - link

    Well, for one, it is certainly not realistic to run single thread benchmarks on application that support multi threading. Realistically, most (all?) people will run the application multi threaded?
  • HStewart - Tuesday, July 30, 2019 - link

    As developer for many years, multiple threads are useful for handling utility threads and such - but IO is typically area which still has to single thread. Unless it has significantly change in API, it is very difficult to multi-thread the actual screen. And similar for disk io as resource.
  • Arnulf - Tuesday, July 30, 2019 - link

    "Our best guess is that these units assist Microsoft Cortana for low-powered wake-on voice inference algorithms ..."

    Our best guess is that these are designed for use by assorted three-letter agencies.
  • PeachNCream - Tuesday, July 30, 2019 - link

    Open mics are totally okay. There is absolutely no privacy risk to you at all and you should never give it a second thought.
  • ToTTenTranz - Tuesday, July 30, 2019 - link

    With 4x TB3 connections available, I wonder if the maker of an external GPU box could develop a multiplexer that combined two TB3 connections into a PCIe 3.0 8x.

    This would significantly decrease some problems that eGPU owners are having due to relatively low CPU-GPU bandwidth.

Log in

Don't have an account? Sign up now