Conclusion

The idea behind the Optane Memory H10 is quite intriguing. QLC NAND needs a performance boost to be competitive against mainstream TLC-based SSDs, and Intel's 3D XPoint memory is still by far the fastest non-volatile storage on the market. Unfortunately, there are too many factors weighing down the H10's potential. It's two separate SSDs on one card, so the NAND side of the drive still needs some DRAM that adds to the cost. The caching is entirely software managed, so the NAND SSD controller and the Optane controller cannot coordinate with each other and Intel's caching software sometimes struggles to make good use of both portions of the drive simultaneously.

Some of these challenges are exacerbated by benchmarking conditions; our test suite was designed with SLC write caching in mind but not two layers of cache that are sometimes functioning more like a RAID-0. None of our synthetic benchmarks managed to trigger that bandwidth aggregation between the Optane and NAND portions of the H10. Intel cautions that they have only optimized their caching algorithms for real-world storage patterns, and it is easy to see how some of our tests have differences that may be very significant. (In particular, many of our tests only give the system the opportunity to use block-level caching, but Intel's software can also perform file-level caching.) But this only emphasizes that the Optane Memory H10 is not a one size fits all storage solution.

For the heaviest, most write-intensive workloads, putting a small Optane cache in front of the QLC NAND only postpones the inevitable performance drops. In some cases, trying to keep the right data in the cache causes more performance issues than it solves. However, the kind of real-world workloads that generate that much IO are unlikely to run well on a 15W notebook CPU anyways. The Optane cache doesn't magically transform a low-end SSD into a top of the line drive, and the Optane Memory H10 is probably never going to be a good choice for desktops that can easily accommodate a wider range of storage options than a thin ultrabook.

On lighter workloads that are more typical of what an ultrabook is good for, the Optane Memory H10 is generally competitive with other low-end NVMe offerings and in good conditions it can be more responsive than any NAND flash-only drive. For everyday use, the H10 is certainly preferable over a QLC-only drive, but against TLC-based drives it's a tough sell. We haven't had the chance to perform detailed power measurements of the Optane Memory H10, but there's little chance it can provide better battery life than the best TLC-based SSDs.

If Intel is serious about making QLC+Optane caching work well enough to compete against TLC-only drives, they'll have to do better than the Optane Memory H10. TLC-only SSDs will almost always have a more consistent performance profile than a tiered setup. The Optane cache on the H10 doesn't soften the rough edges enough to make it suitable for heavy workloads, and it doesn't enhance the performance on light workloads enough to give the H10 a significant advantage over the best TLC drives. When the best-case performance of even a QLC SSD is solidly in "fast enough" territory thanks to SLC caching, the focus should be on improving the worst case, not on optimizing use cases that already feel almost instantaneous.

Optane has found great success in some segments of the datacenter storage market, but in the consumer market it's still looking for the right niche. QLC NAND is also still relatively unproven, though recently it has finally started to deliver on the promise of meaningfully lower prices. The combination of QLC and Optane might still be able to produce an impressive consumer product, but it will take more work from Intel than this relatively low-effort product.

Mixed Read/Write Performance
Comments Locked

60 Comments

View All Comments

  • The_Assimilator - Tuesday, April 23, 2019 - link

    > I don't understand the purpose of this product.

    It's Intel still trying, and still failing, to make Optane relevant in the consumer space.
  • tacitust - Tuesday, April 23, 2019 - link

    It works in the sense that the OEMs who use this drive will be able to use the fact that customers will be getting cutting edge Optane storage. As the review says, this is a low effort solution, so it likely didn't cost much to develop, so they won't need too many design wins to recoup their costs. It also gets Optane into many more consumer devices, which helps in the long run in terms of perception, if nothing else.

    Note: most users won't know or even care that the drive itself doesn't provide faster performance than other solutions, so it doesn't really matter to Intel either. If they get the design win, Optane does gain relevance in the consumer space, just not with the small segment of power users who read AnandTech for the reviews.
  • ironargonaut - Monday, April 29, 2019 - link

    Seems it does provide faster performance in some usage cases.
    https://www.pcworld.com/article/3389742/intel-opta...
  • CheapSushi - Wednesday, April 24, 2019 - link

    I can't stand these dumb posts where people shut down the usage for consumers. I use it all the time for OS and other programs/files. I use it as cache. I use it for different reasons. Even the cheap early x2 laned variants. I'm not in IT or anything enterprise.
  • name99 - Thursday, April 25, 2019 - link

    It's worse than that.
    The OPTANE team clearly want to sell as many Optanes as they can.
    But INTC management has decided that they can extract maximal money from enterprise by limiting
  • name99 - Thursday, April 25, 2019 - link

    It's worse than that.
    The OPTANE team clearly want to sell as many Optanes as they can.
    But INTC management has decided that they can extract maximal money from enterprise by limiting the actually sensible Optane uses (in the memory system, either as persistent memory ---for enterprise, or as a good place to swap to, for consumers).

    And so we have this ridiculous situation where the Optane team keeps trying to sell Optane in ways that make ZERO sense because the way that makes by far the most sense (sell a 16 or 32 GB or 64GB DIMM that acts as the swap space) is prevented by Intel high management (who presumably are scared that if cheap CPUs can talk to Optane DIMMs, then someone somewhere will figure out how to use them in bulk rather than super expensive special Xeons).
    Corporate dysfunction at its finest...
  • Billy Tallis - Friday, April 26, 2019 - link

    I think it's too soon to say that Intel's artificially holding back Optane DIMMs from market segments where they might have a chance. They had initially planned to have Optane DIMM support in Skylake-SP but couldn't get it working until Cascade Lake, which has only been shipping in volume for a few months. Now that they have got one working Optane-compatible memory controller out the door, they can consider bringing those memory controller features down to other product segments. But we've seen that they have given up on updating the memory controllers on their 14nm consumer parts even to provide LPDDR4 support, which certainly is a more compelling and widely-demanded feature than Optane support. I wouldn't expect Intel to be able to introduce Optane support to their consumer CPUs until their second generation of 10nm (not counting CNL) processors at the earliest. Trying to squeeze it into their first mass-market 10nm would be unreasonable since they should be trying at all costs to avoid feature creep on those parts and just ship something that works and isn't still Skylake.
  • ironargonaut - Monday, April 29, 2019 - link

    Read here for an actual real world usage test. Two system with only memory difference and same input sometimes significantly different results.
    https://www.pcworld.com/article/3389742/intel-opta...
    3X speed up for some tasks. I don't know about ya'll but I multitask a lot at work so I will let background stuff go while I do something else that is in front of me.
  • weevilone - Monday, April 22, 2019 - link

    That's too bad. I tried to tinker with the Optane caching when it launched and it was a software disaster. I wrote it off to early days stuff and put it in my kids' PC when they began to allow non-boot drives to be cached. It was another disaster and Intel's techs couldn't figure it out.

    I wound up re-installing Windows the first time and I had to redo the kids' game drive the second time. No thanks.
  • CheapSushi - Wednesday, April 24, 2019 - link

    The problem is you were using the proprietary HDD caching they marketed. There are so many ways to do drive caching on Windows that doesn't involve that Intel software. It's way better and smoother. even if still software. Software RAID and cache is superior to hardware cache unless you're using $1K+ add-on cards.

Log in

Don't have an account? Sign up now