AnandTech Storage Bench - Heavy

Our Heavy storage benchmark is proportionally more write-heavy than The Destroyer, but much shorter overall. The total writes in the Heavy test aren't enough to fill the drive, so performance never drops down to steady state. This test is far more representative of a power user's day to day usage, and is heavily influenced by the drive's peak performance. The Heavy workload test details can be found here. This test is run twice, once on a freshly erased drive and once after filling the drive with sequential writes.

ATSB - Heavy (Data Rate)

On the Heavy test, the caching unambiguously helps the Intel Optane Memory H10, bringing its average data rate up into the range of decent TLC-based NVMe SSDs, when the test is run on an empty drive. The full-drive performance is still better with the cache than without, but ultimately the post-SLC behavior of the QLC NAND cannot be hidden by the Optane. None of the TLC-based drives slow down when full as much as the QLC drives do.

ATSB - Heavy (Average Latency)ATSB - Heavy (99th Percentile Latency)

The average and 99th percentile latency scores for the H10 are competitive with TLC drives only when the test is run on an empty drive. When the Heavy test is run on a full drive with a full SLC cache and cold Optane cache, latency is worse than even the hard drive with an Optane cache. The average latency for the H10 in the full-drive case is still substantially better than using the QLC portion alone, but the Optane cache doesn't help the 99th percentile latency at all.

ATSB - Heavy (Average Read Latency)ATSB - Heavy (Average Write Latency)

Average read latencies from the H10 are significantly worse when the Heavy test is run on a full drive, but it's still slightly better than the SATA SSD. The average write latencies are where the QLC stands out, with a full H10 scoring worse than the hard drive, and with the Optane caching disabled write latency is ten times higher than for a TLC SSD.

ATSB - Heavy (99th Percentile Read Latency)ATSB - Heavy (99th Percentile Write Latency)

The 99th percentile read latency of the H10 with Optane caching off is a serious problem during the full-drive test run, but using the Optane cache brings read QoS back into the decent range for SSDs. The 99th percentile write latency is bad without the Optane cache and worse with it.

AnandTech Storage Bench - The Destroyer AnandTech Storage Bench - Light
POST A COMMENT

60 Comments

View All Comments

  • SaberKOG91 - Monday, April 22, 2019 - link

    Nothing special about my usage on my laptop. Running linux so I'm sure journals and other logs are a decent portion of the background activity. I also consume a fair bit of streaming media so caching to disk is also very likely. This machine gets actively used an average of 10-12 hours a day and is usually only completely off for about 8-10 hours. I also install about 150MB of software updates a week, which is pretty on par with say windows update. I also use Spotify which definitely racks up some writes.

    I can't speak to the endurance of that drive, but it is also MLC instead of TLC.

    I would argue that it means that the cost per GB of QLC is now low enough that the manufacturing benefit of smaller dies for the same capacity is worth it. Most consumer SSDs are 250-500GB regardless of technology.

    I'm not referring to a few faulty units or infant mortality. I can't remember the exact news piece, but there were reports of unusually high failure rates in the first generation of Optane cache modules. I also wasn't amused when Anandtech's review sample of the first consumer cache drive died before they finished testing it. You're also assuming that they only factor in the failure of a drive is write endurance. It could very well be that overheating, leakage buildup, or some other electrical factor lead to premature failure, regardless of TBW. It's also worth noting that you may accelerate drive death if you exceed the rated DWPD.
    Reply
  • RSAUser - Tuesday, April 23, 2019 - link

    I'm at about 3TB after nearly 2 years, this with adding new software like android etc. And swapping between technologies constantly and wiping my drive once every year.
    I also have Spotify, game on it, etc.

    There is something wrong with your usage if you have that much write? I have 32GB RAM so very little caching though, so could be the difference.
    Reply
  • IntelUser2000 - Tuesday, April 23, 2019 - link

    "You're also assuming that they only factor in the failure of a drive is write endurance. It could very well be that overheating, leakage buildup, or some other electrical factor lead to premature failure, regardless of TBW."

    I certainly did not. It was in reply to your original post.

    Yes, write endurance is a small part of a drive failing. If its failing due to other reasons way before warranty, then they should move to remedy this.
    Reply
  • Irata - Tuesday, April 23, 2019 - link

    You are forgetting the sleep state on laptops. That alone will result in a lot of data being written to the SSD. Reply
  • jeremyshaw - Sunday, July 14, 2019 - link

    Or they have a laptop with the "Modern Standby," which is code for:

    Subpar idle state which goes to Hibernation (flush RAM to SSD - I have 32GB of RAM) whenever the system drains too much power in this "Standby S3 replacement."
    Reply
  • voicequal - Monday, April 22, 2019 - link

    "Optane has such horrible lifespan at these densities that reviewers destroyed the drives just benchmarking them."

    What is your source for this comment?
    Reply
  • SaberKOG91 - Monday, April 22, 2019 - link

    Anandtech killed their review sample when Optane first came out. Happened other places too. Reply
  • voicequal - Tuesday, April 23, 2019 - link

    Link? Anandtech doesn't do endurance testing, so I don't think it's possible to conclude that failures were the result of worn out media. Reply
  • FunBunny2 - Wednesday, April 24, 2019 - link

    "Since our Optane Memory sample died after only about a day of testing, we cannot conduct a complete analysis of the product or make any final recommendations. "

    here: https://www.anandtech.com/show/11210/the-intel-opt...
    Reply
  • Mikewind Dale - Monday, April 22, 2019 - link

    I don't understand the purpose of this product. For light duties, the Optane will be barely faster than the SLC cache, and the limitation to PCIe x2 might make the Optane slower than a x4 SLC cache. And for heavy duties, the PCIe x2 is definitely a bottleneck.

    So for light duties, a 660p is just as good, and for heavy duties, you need a Samsung 970 or something similar.

    Add in the fact that this combo Optane+QLC has serious hardware compatibility problems, and I just don't see the purpose. Even in the few systems where the Optane+QLC worked, it would still be much easier to just install a 660p and be done with it. Adding an extra software layer is just one more potential point of failure, and there's barely any offsetting benefit.
    Reply

Log in

Don't have an account? Sign up now