AnandTech Storage Bench - Heavy

Our Heavy storage benchmark is proportionally more write-heavy than The Destroyer, but much shorter overall. The total writes in the Heavy test aren't enough to fill the drive, so performance never drops down to steady state. This test is far more representative of a power user's day to day usage, and is heavily influenced by the drive's peak performance. The Heavy workload test details can be found here. This test is run twice, once on a freshly erased drive and once after filling the drive with sequential writes.

ATSB - Heavy (Data Rate)

On the Heavy test, the caching unambiguously helps the Intel Optane Memory H10, bringing its average data rate up into the range of decent TLC-based NVMe SSDs, when the test is run on an empty drive. The full-drive performance is still better with the cache than without, but ultimately the post-SLC behavior of the QLC NAND cannot be hidden by the Optane. None of the TLC-based drives slow down when full as much as the QLC drives do.

ATSB - Heavy (Average Latency)ATSB - Heavy (99th Percentile Latency)

The average and 99th percentile latency scores for the H10 are competitive with TLC drives only when the test is run on an empty drive. When the Heavy test is run on a full drive with a full SLC cache and cold Optane cache, latency is worse than even the hard drive with an Optane cache. The average latency for the H10 in the full-drive case is still substantially better than using the QLC portion alone, but the Optane cache doesn't help the 99th percentile latency at all.

ATSB - Heavy (Average Read Latency)ATSB - Heavy (Average Write Latency)

Average read latencies from the H10 are significantly worse when the Heavy test is run on a full drive, but it's still slightly better than the SATA SSD. The average write latencies are where the QLC stands out, with a full H10 scoring worse than the hard drive, and with the Optane caching disabled write latency is ten times higher than for a TLC SSD.

ATSB - Heavy (99th Percentile Read Latency)ATSB - Heavy (99th Percentile Write Latency)

The 99th percentile read latency of the H10 with Optane caching off is a serious problem during the full-drive test run, but using the Optane cache brings read QoS back into the decent range for SSDs. The 99th percentile write latency is bad without the Optane cache and worse with it.

AnandTech Storage Bench - The Destroyer AnandTech Storage Bench - Light
POST A COMMENT

60 Comments

View All Comments

  • Flunk - Monday, April 22, 2019 - link

    This sounded interesting until I read software solution and split bandwidth. Intel seems to be really intent upon forcing Optane into products regardless if they make sense or not.

    Maybe it would have made sense with SSDs at the price points they were this time last year, but now it just seems like pointless exercise.
    Reply
  • PeachNCream - Monday, April 22, 2019 - link

    Who knew Optane would end up acting as a bandage fix for QLC's garbage endurance? I suppose its better than nothing, but 0.16 DWPD is terrible. The 512GB model would barely make it to 24 months in a laptop without making significant configuration changes (caching the browser to RAM, disabling the swap file entirely, etc.) Reply
  • IntelUser2000 - Monday, April 22, 2019 - link

    The H10 is a mediocre product, but endurance claims are overblown.

    Even if the rated lifespan is a total of 35TB, you'd be perfectly fine. The 512GB H10 is rated for 150TB.

    The amount of users that would even reach 20TB in 5 years are in the minority. When I was actively using the system, my X25-M registered less than 5TB in 2 years.
    Reply
  • PeachNCream - Monday, April 22, 2019 - link

    Your usage is extremely light. Endurance is a real-world problem. I've already dealt with it a couple of times with MLC SSDs. Reply
  • IntelUser2000 - Monday, April 22, 2019 - link

    SSDs are over 50% of the storage sold in notebooks. It's firmly reaching mainstream there.

    I would say instead I think most of *your* customers are too demanding. Vast majority of the folks would use less than me.

    The market agrees too, which is why we went from MLC to TLC, and now we have QLCs coming.

    Perhaps you are confusing write-endurance with physical stress endurance, or even natural MTBF related endurance.
    Reply
  • PeachNCream - Monday, April 22, 2019 - link

    I haven't touched on any usage but my own so far. The drives' own software identified the problems so if there is confusion about failures, that's in the domain of the OEM. (Note, those drives don't fail gracefully either so that data can be recovered. It's a pretty ugly end to reach.) As for the move from MLC to TLC and now QLC -- thats driven by cost sensitivity for given capacities and ignores endurance to a great extent. Reply
  • IntelUser2000 - Monday, April 22, 2019 - link

    I get the paranoia. The world does that to you. You unconsciously become paranoid in everything.

    However, for most folks endurance is not a problem. The circuit in the SSD will likely fail of natural causes before write endurance is reached. Everything dies. But people are just excessively worried about NAND SSD write endurance because its a fixed metric.

    It's like knowing the date of your death.
    Reply
  • PeachNCream - Friday, May 3, 2019 - link

    That's not really a paranoia thing. You're attempt to bait someone into an argument where you can then toss out insults is silly. Reply
  • SaberKOG91 - Monday, April 22, 2019 - link

    That's a naive argument. Most SSDs of 250GB or larger are rated for at least 100TBW on a 3 year warranty. 75TBW on a 5 year warranty is an insult.

    I think you underestimate how much demand the average user makes of their system. Especially when you have things like anti-virus and web browsers making lots of little writes in the background, all the time.

    The market is going from TLC to QLC because of density, not reliability. We had all the same reliability issues going from MLC to TLC and from SLC to MLC. It took years for each transition for manufacturers to reach the same durability level as the previous technology, all while seeing the previous generation continuing to improve even further. Moving to denser tech means smaller dies for the same capacity or higher capacity for unit area which is good for everyone. But these drives don't even look to have 0.20DWPD or 5 year warranty of other QLC Flash products.

    I am a light user who doesn't have a lot of photos or video and this laptop has already seen 1.3TBW in only 3 months. My work desktop has over 20TBW from the last 5 years. My home desktop where I compile software has over 12TBW in the first year. My gaming PC has 27TBW on a 5 year old drive. So while I might agree that 75TBW seems like a lot, If I were to simplify my life down to one machine, I'd easily hit 20TBW a year or 8TBW a year even without the compile machine.

    That all said, you're still ignoring that many Micron and Samsung drives have been shown to go way beyond their rated lifespan whereas Optane has such horrible lifespan at these densities that reviewers destroyed the drives just benchmarking them. Since the Optane is acting as a persistent cache, what happens to these drives when the Optane dies? At the very least performance will tank. At the worst the drive is hosed.
    Reply
  • IntelUser2000 - Monday, April 22, 2019 - link

    Something is very wrong with your drive or you are not really a "light user".

    1300GB in 3 months equals to 14GB write per day. That means if you use your computer 7 hours a day you'd be using 2GB/s hour. The computer I had the SSD on I used it for 8-12 hours every day for the two years and it was a gaming PC and a primary one at that.

    Perhaps the X25-M drive I had is particularly good at this aspect, but the differences seem too much.

    Anyways, moving to denser cells just mean consumer level workloads do not need the write endurance MLC needs and lower prices are preferred.

    "Optane has such horrible lifespan at these densities that reviewers destroyed the drives just benchmarking them."

    Maybe you are referring to the few faulty units in the beginning? Any devices can fail in the first 30 days. That's completely unrelated to *write endurance*. The first gen modules are rated for 190TBW. If they played around for a year(which is unrealistic since its for a benchmark), they would have been using 500GB/s day. Maybe you want to verify your claims yourself.
    Reply

Log in

Don't have an account? Sign up now