GPU Performance & Power

On the GPU side of things, Qualcomm has long been leading the benchmark charts with the help of their in-house Adreno GPU architecture. With the Galaxy S10, we again see a new round of Adreno vs Mali in the Snapdragon and Exynos variants of the phone.

The Adreno 640 in the Snapdragon 855 has relatively conservative performance targets this generation. Here Qualcomm promises 20% better performance even though the GPU itself has a reported 50% more execution units. What has happened is that Qualcomm has dropped the clock frequency from 710MHz down to 585MHz, account for where most of that theoretical GPU performance is missing. The rationale here is to be able to run wider and slower, and thus more efficiently.

On the Exynos side of things, the new chip adopts a new Mali G76MP12 GPU clocked in at up to 702MHz. We’re already seen the GPU inside of the Kirin 980, however for whatever reason Samsung S.LSI has always been able to achieve better results than HiSilicon for several generations in a row, so it’ll be interesting to see how these two chipsets differ.

Starting off with the 3Dmark Sling Shot Extreme Unlimited test suite, the Physics workload is mostly a CPU bound test within a GPU thermally constrained scenario.

3DMark Sling Shot 3.1 Extreme Unlimited - Physics

The Exynos 9820 surprisingly takes the performance lead between both Galaxy S10 units. The result here is a very big change compared to previous generation Exynos SoCs. I hadn’t had the time to investigate if this is actually caused by improvements of the new M4 core or if the workload is being scheduled on the A75 cores. Both peak performance and sustained performance here are very good and are only beaten by Kirin 980 devices.

The Snapdragon 855 Galaxy S10 also posts excellent peak perf results, however the CPU seem to throttle quite a bit more, falling in line with what last year’s Snapdragon 845 devices were scoring.

3DMark Sling Shot 3.1 Extreme Unlimited - Graphics 

In the Graphics score of the workload, we come back to the familiar dominance of Qualcomm GPUs. What is interesting to see here is that both Galaxy S10 units sport worse sustained performance than the Note9 with last year’s chipsets. Most likely this is due to different thermal limits on these two Samsung devices.

GFXBench Aztec Ruins - High - Vulkan/Metal - Off-screen GFXBench Aztec Ruins - Normal - Vulkan/Metal - Off-screen

In the new GFXBench Aztec Ruins tests, the Exynos unit takes the lead in terms of sustained performance in the High variant test, only beaten by Apple’s newest iPhones. The phone doesn’t seem to reproduce the same lead in the Normal variant and subsequently slightly trails the Snapdragon 855 version. In sustained performance, the Exynos S10 beats last year’s predecessors, however the Qualcomm chip merely matches some of the better Snapdragon 845 devices from last year.

GFXBench Manhattan 3.1 Off-screen

In Manhattan 3.1 Off-screen, we see both S10’s neck-in-neck in peak performance, and sustained performance also doesn’t seem all that different. The Exynos variant again shows big leaps over last year’s G72MP18 GPU, and the Qualcomm variant again is only able to match or actually lose out to some of the more thermally aggressive Snapdragon 845 units from last year.

GFXBench Manhattan 3.1 Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone XS (A12) Warm 7FF 76.51 3.79 20.18 fps/W
iPhone XS (A12) Cold / Peak 7FF 103.83 5.98 17.36 fps/W
Galaxy 10+ (Snapdragon 855) 7FF 70.67 4.88 14.46 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 68.87 5.10 13.48 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 61.16 5.01 11.99 fps/W
Huawei Mate 20 Pro (Kirin 980) 7FF 54.54 4.57 11.93 fps/W
Galaxy S9 (Exynos 9810) 10LPP 46.04 4.08 11.28 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 38.90 3.79 10.26 fps/W
LeEco Le Pro3 (Snapdragon 821) 14LPP 33.04 4.18 7.90 fps/W
Galaxy S7 (Snapdragon 820) 14LPP 30.98 3.98 7.78 fps/W
Huawei Mate 10 (Kirin 970) 10FF 37.66 6.33 5.94 fps/W
Galaxy S8 (Exynos 8895) 10LPE 42.49 7.35 5.78 fps/W
Galaxy S7 (Exynos 8890) 14LPP 29.41 5.95 4.94 fps/W
Meizu PRO 5 (Exynos 7420) 14LPE 14.45 3.47 4.16 fps/W
Nexus 6P (Snapdragon 810 v2.1) 20Soc 21.94 5.44 4.03 fps/W
Huawei Mate 8 (Kirin 950) 16FF+ 10.37 2.75 3.77 fps/W
Huawei Mate 9 (Kirin 960) 16FFC 32.49 8.63 3.77 fps/W
Huawei P9 (Kirin 955) 16FF+ 10.59 2.98 3.55 fps/W

Looking at the power consumption and efficiency tables in Manhattan 3.1, we see both devices showcase quite similar characteristics. Performance is very close in both chipsets, with also very similar power consumption within 220mW of each other. The efficiency also is quite close to each other. Interestingly both Qualcomm and Samsung weren’t able to close the gap to Apple’s latest iPhones and the A12 which still has a considerable performance and power efficiency lead.

For the Exynos chipset, it’s also unfortunate to see that absolute power has gone up by 1W, meaning the device will heat up faster, even though performance and efficiency is better.

GFXBench T-Rex 2.7 Off-screen

In T-Rex we again see both chipsets perform very similarly with similar sustained performance figures.

GFXBench T-Rex Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone XS (A12) Warm 7FF 197.80 3.95 50.07 fps/W
iPhone XS (A12) Cold / Peak 7FF 271.86 6.10 44.56 fps/W
Galaxy 10+ (Snapdragon 855) 7FF 167.16 4.10 40.70 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 150.40 4.42 34.00 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 166.00 4.96 33.40fps/W
Galaxy S9 (Exynos 9810) 10LPP 141.91 4.34 32.67 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 108.20 3.45 31.31 fps/W
Huawei Mate 20 Pro (Kirin 980) 7FF 135.75 4.64 29.25 fps/W
LeEco Le Pro3 (Snapdragon 821) 14LPP 94.97 3.91 24.26 fps/W
Galaxy S7 (Snapdragon 820) 14LPP 90.59 4.18 21.67 fps/W
Galaxy S8 (Exynos 8895) 10LPE 121.00 5.86 20.65 fps/W
Galaxy S7 (Exynos 8890) 14LPP 87.00 4.70 18.51 fps/W
Huawei Mate 10 (Kirin 970) 10FF 127.25 7.93 16.04 fps/W
Meizu PRO 5 (Exynos 7420) 14LPE 55.67 3.83 14.54 fps/W
Nexus 6P (Snapdragon 810 v2.1) 20Soc 58.97 4.70 12.54 fps/W
Huawei Mate 8 (Kirin 950) 16FF+ 41.69 3.58 11.64 fps/W
Huawei P9 (Kirin 955) 16FF+ 40.42 3.68 10.98 fps/W
Huawei Mate 9 (Kirin 960) 16FFC 99.16 9.51 10.42 fps/W

In the power end efficiency tables we however see a big difference between the two devices. Here Qualcomm is able to clearly achieve lower power and higher efficiency than the Exynos.

One thing that I note on both Galaxy S10 units is that I again saw some very odd thermal behaviour on the part of the Qualcomm unit. Just like we measured on the Note9 a few months ago, the Qualcomm Galaxy S10+ reached much higher initial temperatures than the Exynos S10+. I measured peak skin temperatures on the front screen near the SoC nearing 49°C on the S855 unit while the E9820 peaked around 43°C. Again, much like last year, this seems to be a time-bound boost mechanism as after a certain period of around 20 minutes the Snapdragon unit throttles down to a sustained 42-43°C. What this means is that the Snapdragon unit has higher (longer) peak performance figures at a cost of a hotter device, before both devices equalise at a sustained ~42°C.

Overall, the Snapdragon unit this year does still have a performance and efficiency lead, however the gap has been narrowed compared to what we’ve seen in the past years. The new Mali G76 looks to have made solid improvements, and ALU heavy workloads in particular have seen very large leaps compared to the Exynos 9810.

The Adreno 640 this generation just seems quite conservative – Apple has taken Qualcomm’s performance crown in mobile and most importantly also the efficiency crown. Both the Snapdragon 855 and A12 are both manufactured on the same process node so it’s a valid Dragon-to-Apples comparison, and here Qualcomm is beaten by such a significant margin of which in the past we’ve only been used to seeing Qualcomm beat Arm with. For the next generation, we thus hope both Qualcomm and Arm will be able to show more significant jumps in both performance and efficiency. Samsung’s own GPU is also a wildcard, however I’m not expecting to see this productised in next year’s Exynos.

System Performance Display Measurement
POST A COMMENT

228 Comments

View All Comments

  • Brightontech - Sunday, April 21, 2019 - link

    it is an awesome phone
    <a href="https://www.brightontech.net/2019/04/audiovideo-ed... Editor and Video Converter</a>
    Video Editor and Video Converter
    Reply
  • Jhereck - Tuesday, April 23, 2019 - link

    Hi Andrei another question regarding the patch designed to increase PELT resonsiveness : is there any way a third party kernel can include it, therefore making s9 and s10 the devices they should be ?

    You know like last year when you tried to play with s9 exynos kernel in order to match snapdragon power and power efficency ?

    Thanks in advance
    Reply
  • Rixos - Thursday, May 02, 2019 - link

    It's kind of sad, I was actualy looking at the s10e as a replacement device for my galaxy S7 but as I live in Europe I would be getting the Exynos variant. Worse audio quality, less processing power and worse camera results. Basically seeing this kind of ruined the purchase for me. In some sense I wish I would not have seen it, the S10e is likely still a great upgrade for my S7 but knowing that there is a better version out there just ruins it for me. I guess ignorance sometimes really is bliss. Reply
  • theblitz707 - Thursday, May 23, 2019 - link

    I see this is in every review. I actually went to stores and used my phones ambient light sensor and an another phones flashlight to measure display brightnesses. Although slightly inaccurate lg g7 gave a 1050lux reading with boost on.(all test on apl100) Taking that as a base s9 plus did 1020 s10 plus did 1123 and p20 pro did around 900 when i shone my flashlight to each sensor. So why everyone makes it seem like they are less bright than they actually are? Does using a flashlight to trigger high brightness impossible to imagine? Let me tell you those oled screens get very bright with high ambient light like outside on a sunny day. Reply
  • ballsystemlord - Monday, June 03, 2019 - link

    Spelling and grammar corrections. I did not read the whole thing, so there maybe more.

    Samsung new L3 cache consists of two different structures
    Possesive:
    Samsung's new L3 cache consists of two different structures

    Similarly, the A75's should be a ton more efficient the A55 cores at the upper performance points of the A55's.
    Missing "than":
    Similarly, the A75's should be a ton more efficient than the A55 cores at the upper performance points of the A55's.

    Arm states that the new Cortex A76 has new state-of-the-art prefetchers and looking at what the CPU is able to do one my patterns I'd very much agree with this claim.
    Missing "to":
    Arm states that the new Cortex A76 has new state-of-the-art prefetchers and looking at what the CPU is able to do to one my patterns I'd very much agree with this claim.

    The nature of region-based prefetchers means that fundamentally any patterns which has some sort of higher-level repeatability will get caught and predicted, which unfortunately means designing a structured test other than a full random pattern is a bit complicated to achieve.
    "have" not "has" and a missing y:
    The nature of region-based prefetchers means that fundamentally any patterns which have some sort of higher-level repeatability will get caught and predicted, which unfortunately means designing a structured test other than a fully random pattern is a bit complicated to achieve.

    Switching over from linear graphs to logarithmic graphs this makes transitions in the cache hierarchies easier to analyse.
    Excess "this" and analyze is with a "z":
    Switching over from linear graphs to logarithmic graphs makes transitions in the cache hierarchies easier to analyze.

    Indeed one of the bigger microarchitectural changes of the core was the addition of a second data store unit.
    Missing comma:
    Indeed, one of the bigger microarchitectural changes of the core was the addition of a second data store unit.

    ...we see that in the L3 memory region store curve is actually offset by 1MB compared to the flip/load curves, which ending only after 3MB.
    "ed" not "ing":
    ...we see that in the L3 memory region store curve is actually offset by 1MB compared to the flip/load curves, which ended only after 3MB.

    "Traditionally such misses are tracked by miss status holding registers (MSHRs), however I haven't seen Arm CPUs actually use this nomenclature."
    This is almost certainly a run on sentence with missing punctuation. Try:
    "Traditionally, such misses are tracked by miss status holding registers (MSHRs). However, I haven't seen Arm CPUs actually use this nomenclature."

    "Again to have a wider range of performance comparison across ARMv8 cores in mobile here's a grand overview of the most relevant SoCs we've tested:"
    Missing comma:
    "Again, to have a wider range of performance comparison across ARMv8 cores in mobile here's a grand overview of the most relevant SoCs we've tested:"
    Reply
  • giallo - Monday, June 17, 2019 - link

    how much did they pay you to write this bullshit? you must be true downs Reply
  • theblitz707 - Monday, August 19, 2019 - link

    i discovered something about display brightness on oleds recently. I did a test with a7 with auto brightness on.

    Lets assume, on a slightly dark room you set your brightness to 25nits(whites), so when you go out to the sun phone boosts around 750-800 nits.

    Now lets assume on a slightly dark room you set your brightness to 250 nits, now when you go out to the sun phone boosts to 900nits. (what i actually did was not go in a dark room but while i was outside i covered the sensor with my hand so it thought i was in a dim place)

    I used to assume everytime you go out to sun it would get maxed but apparently it still depends on what you set your phone before.(dumb a bit if you ask me, cuz you know, its THE sun, brightest thing..) I believe this might be the reason why you didnt reach to 100APL 1200nits.

    P.s. I know every brightness sensor is different but i had tested lg on full white and i had gotten 1050 lux, i also tested s10 or plus, all white and i had gotten 1120lux on white,100APL.(It was painfully hard to find the sensor to shine the flashlight, its somewhere around upper part of the phone under the display).

    It would be cool if you retested the brightness in this way:

    1- After you put auto brightness on, Go in a very dark room or cover the sensor, so phone put itself to a dark brightness, after that happens, set the brigthness to max while you are still in the dark room.(auto is still on).
    2- Now go under sun or shine a phone flashlight to sensor and test the brightness on white APL100. That would be really nice.
    Reply
  • theblitz707 - Monday, August 19, 2019 - link

    lg is g7 on boosted, forgot to mention Reply

Log in

Don't have an account? Sign up now