CPU Performance: Encoding Tests

With the rise of streaming, vlogs, and video content as a whole, encoding and transcoding tests are becoming ever more important. Not only are more home users and gamers needing to convert video files into something more manageable, for streaming or archival purposes, but the servers that manage the output also manage around data and log files with compression and decompression. Our encoding tasks are focused around these important scenarios, with input from the community for the best implementation of real-world testing.

All of our benchmark results can also be found in our benchmark engine, Bench.

Handbrake 1.1.0: Streaming and Archival Video Transcoding

A popular open source tool, Handbrake is the anything-to-anything video conversion software that a number of people use as a reference point. The danger is always on version numbers and optimization, for example the latest versions of the software can take advantage of AVX-512 and OpenCL to accelerate certain types of transcoding and algorithms. The version we use here is a pure CPU play, with common transcoding variations.

We have split Handbrake up into several tests, using a Logitech C920 1080p60 native webcam recording (essentially a streamer recording), and convert them into two types of streaming formats and one for archival. The output settings used are:

  • 720p60 at 6000 kbps constant bit rate, fast setting, high profile
  • 1080p60 at 3500 kbps constant bit rate, faster setting, main profile
  • 1080p60 HEVC at 3500 kbps variable bit rate, fast setting, main profile

Handbrake 1.1.0 - 720p60 x264 6000 kbps FastHandbrake 1.1.0 - 1080p60 x264 3500 kbps FasterHandbrake 1.1.0 - 1080p60 HEVC 3500 kbps Fast

7-zip v1805: Popular Open-Source Encoding Engine

Out of our compression/decompression tool tests, 7-zip is the most requested and comes with a built-in benchmark. For our test suite, we’ve pulled the latest version of the software and we run the benchmark from the command line, reporting the compression, decompression, and a combined score.

It is noted in this benchmark that the latest multi-die processors have very bi-modal performance between compression and decompression, performing well in one and badly in the other. There are also discussions around how the Windows Scheduler is implementing every thread. As we get more results, it will be interesting to see how this plays out.

Please note, if you plan to share out the Compression graph, please include the Decompression one. Otherwise you’re only presenting half a picture.

7-Zip 1805 Compression7-Zip 1805 Decompression7-Zip 1805 Combined

WinRAR 5.60b3: Archiving Tool

My compression tool of choice is often WinRAR, having been one of the first tools a number of my generation used over two decades ago. The interface has not changed much, although the integration with Windows right click commands is always a plus. It has no in-built test, so we run a compression over a set directory containing over thirty 60-second video files and 2000 small web-based files at a normal compression rate.

WinRAR is variable threaded but also susceptible to caching, so in our test we run it 10 times and take the average of the last five, leaving the test purely for raw CPU compute performance.

WinRAR 5.60b3

AES Encryption: File Security

A number of platforms, particularly mobile devices, are now offering encryption by default with file systems in order to protect the contents. Windows based devices have these options as well, often applied by BitLocker or third-party software. In our AES encryption test, we used the discontinued TrueCrypt for its built-in benchmark, which tests several encryption algorithms directly in memory.

The data we take for this test is the combined AES encrypt/decrypt performance, measured in gigabytes per second. The software does use AES commands for processors that offer hardware selection, however not AVX-512.

AES Encoding

CPU Performance: Office Tests CPU Performance: Web and Legacy Tests
Comments Locked

65 Comments

View All Comments

  • romrunning - Monday, February 11, 2019 - link

    It may just be me, but all of the links on the "Pages In This Review" at the bottom of the main page simply return me to the main page.
  • romrunning - Monday, February 11, 2019 - link

    But the drop-down to the specific page works as expected.
  • evilspoons - Monday, February 11, 2019 - link

    It's definitely not just you. I spent a few tries wondering what I was doing wrong and re-read the start of the article until I tried the drop-down menu instead of the links.
  • Ian Cutress - Monday, February 11, 2019 - link

    That's my fault, as the hyperlinks need to be manually added. I had messed up the part of the URL after the /show/13945. It should be fixed now.
  • Kevin G - Monday, February 11, 2019 - link

    I noticed this as well.
  • IGTrading - Monday, February 11, 2019 - link

    Thank you Ian for a good review.

    I completely agree with the conclusion that the 2300X makes perfect sense, but the 2500X is harder to place in the picture ...

    On the other hand, despite 2400G and the 2500X have the same TDP, if I look at the graph with full load power consumption, I can clearly see that the latter has a very generous thermal limit, compared with the 2400G where the thermal envelope seems to be very strictly limited.

    Meaning OEMs will probably be able to use the 2500X for cheaper gaming systems where auto-overclocking is used as a feature and AMD will thus be able to offer something better for a lower price.

    This also allows AMD to push AM4 harder on the market, giving itself the opportunity to future upgrades for AM4 buyers.

    So the 2500X will show considerably better performance than the 2400G despite the similar config (minus the iGPU) while not cannibalizing the 2600 nor the 2400G.

    If AMD manages to sell more 2500X through OEMs, AMD also builds a future upgrade market for itself, unlike Intel that will likely push buyers into purchasing new machines.
  • dromoxen - Monday, February 11, 2019 - link

    ppl buying these CPUs are not the sort to be upgrading the CPU.. to most the computer is a closed box and is upgraded as a whole . I do wonder where all these cores are going .. I mean its great to have 4 6 8 cores with another 8 hyperthreads .. but who is using all that power ? Lets make 4 cores the absolute limit , unless you have a Govt permit to purchase more.
  • GreenReaper - Monday, February 11, 2019 - link

    Browsers have been getting a lot better at using multiple cores, and websites surely do enough in the background nowadays to justify the effort.
  • RadiclDreamer - Tuesday, February 12, 2019 - link

    Why would there be any limit on how man cores? Whats it to you that I want to transcode movies faster, or multitask more, or anything else? And government permit to have more? Thats just insane.
  • kaidenshi - Tuesday, February 12, 2019 - link

    He's trolling like he always does. Anything to get under someone's skin enough to get a reaction out of them.

Log in

Don't have an account? Sign up now