GPU Performance & Power

GPU performance of the new Adreno 640 in the Snapdrago 855 is interesting: The company’s performance claims were relatively conservative as they showcased that the new unit would perform only 20% better than its predecessor. This is a relatively low figure given that Qualcomm also advertises that the new GPU sees a 50% increase in ALU configuration, as well as of course coming on a new 7nm process which should give the SoC a lot of new headroom.

Before discussing the implications in more detail, let’s see the performance numbers in the new GFXBench Aztec benchmarks.

As a reminder, we were only able to test the peak performance of the phone as we didn’t have time for a more thorough sustained performance investigation.

GFXBench Aztec Ruins - High - Vulkan/Metal - Off-screenGFXBench Aztec Ruins - Normal - Vulkan/Metal - Off-screen

Both Aztec High and Normal results fall pretty much in line with Qualcomm’s advertised 20% improvement over the Snapdragon 845. Here the new chipset falls behind Apple’s A11 and A12 chips – although power consumption at peak levels is very different as we’ll see in just a bit.

GFXBench Manhattan 3.1 Off-screen

GFXBench Manhattan 3.1 Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone XS (A12) Warm 7FF 76.51 3.79 20.18 fps/W
iPhone XS (A12) Cold / Peak 7FF 103.83 5.98 17.36 fps/W
Snapdragon 855 QRD 7FF 71.27 4.44 16.05 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 61.16 5.01 11.99 fps/W
Huawei Mate 20 Pro (Kirin 980) 7FF 54.54 4.57 11.93 fps/W
Galaxy S9 (Exynos 9810) 10LPP 46.04 4.08 11.28 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 38.90 3.79 10.26 fps/W
LeEco Le Pro3 (Snapdragon 821) 14LPP 33.04 4.18 7.90 fps/W
Galaxy S7 (Snapdragon 820) 14LPP 30.98 3.98 7.78 fps/W
Huawei Mate 10 (Kirin 970) 10FF 37.66 6.33 5.94 fps/W
Galaxy S8 (Exynos 8895) 10LPE 42.49 7.35 5.78 fps/W
Galaxy S7 (Exynos 8890) 14LPP 29.41 5.95 4.94 fps/W
Meizu PRO 5 (Exynos 7420) 14LPE 14.45 3.47 4.16 fps/W
Nexus 6P (Snapdragon 810 v2.1) 20Soc 21.94 5.44 4.03 fps/W
Huawei Mate 8 (Kirin 950) 16FF+ 10.37 2.75 3.77 fps/W
Huawei Mate 9 (Kirin 960) 16FFC 32.49 8.63 3.77 fps/W
Huawei P9 (Kirin 955) 16FF+ 10.59 2.98 3.55 fps/W

Switching over to the power efficiency table in 3D workloads, we see Qualcomm take the lead in terms of power efficiency at peak performance, only trailing behind Apple's newest A12. What is most interesting is the fact that the Snapdragon 855’s overall power consumption has gone down compared to the Snapdragon 845 – now at around 4.4W versus the 5W commonly measured in S845 phones.

GFXBench T-Rex 2.7 Off-screen

T-Rex’s performance gains are more limited because the test is more pixel and fill-rate bound. Here Qualcomm made a comment about benchmarks reaching very high framerates as they become increasingly CPU bound, but I’m not sure if that’s actually a problem yet as GFXBench has been traditionally very CPU light.

GFXBench T-Rex Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone XS (A12) Warm 7FF 197.80 3.95 50.07 fps/W
iPhone XS (A12) Cold / Peak 7FF 271.86 6.10 44.56 fps/W
Snapdragon 855 QRD 7FF 167.19 3.83 43.65 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 150.40 4.42 34.00 fps/W
Galaxy S9 (Exynos 9810) 10LPP 141.91 4.34 32.67 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 108.20 3.45 31.31 fps/W
Huawei Mate 20 Pro (Kirin 980) 7FF 135.75 4.64 29.25 fps/W
LeEco Le Pro3 (Snapdragon 821) 14LPP 94.97 3.91 24.26 fps/W
Galaxy S7 (Snapdragon 820) 14LPP 90.59 4.18 21.67 fps/W
Galaxy S8 (Exynos 8895) 10LPE 121.00 5.86 20.65 fps/W
Galaxy S7 (Exynos 8890) 14LPP 87.00 4.70 18.51 fps/W
Huawei Mate 10 (Kirin 970) 10FF 127.25 7.93 16.04 fps/W
Meizu PRO 5 (Exynos 7420) 14LPE 55.67 3.83 14.54 fps/W
Nexus 6P (Snapdragon 810 v2.1) 20Soc 58.97 4.70 12.54 fps/W
Huawei Mate 8 (Kirin 950) 16FF+ 41.69 3.58 11.64 fps/W
Huawei P9 (Kirin 955) 16FF+ 40.42 3.68 10.98 fps/W
Huawei Mate 9 (Kirin 960) 16FFC 99.16 9.51 10.42 fps/W

Again switching over to the power and efficiency tables, we see that the Snapdragon 855 is posting a ~30% efficiency boost over the Snapdragon 845, all while slightly improving performance.

Overall, I’m very happy with the initial performance and efficiency results of the Snapdragon 855. The S845 was a bit disappointing in some regards because Qualcomm had opted to achieve the higher performance figures by increasing the peak power requirements compared to exemplary thermal characteristics of the Snapdragon 835. The new chip doesn’t quite return to the low power figures of that generation, however it meets it half-way and does represent a notable improvement over the Snapdragon 845.

System Performance - Slightly Underwhelming? Final Thoughts
POST A COMMENT

132 Comments

View All Comments

  • Spunjji - Wednesday, January 16, 2019 - link

    Sorry, but that's just not true. I have yet to use a phone that feels consistently faster than the OnePlus 6 I'm currently using as a daily driver, and I've done a whole bunch of messing with custom ROMs / kernels, starting back with Cyanogenmod 6 on a Dell Streak. Reply
  • gijames1225 - Tuesday, January 15, 2019 - link

    Sounds very positive given that phones already perform great at the flagship level. The single core improvement is greatly welcomed given how much that matters for javascript. Reply
  • fred666 - Tuesday, January 15, 2019 - link

    I like their performance over time graph on page 1.
    It shows the 855 to be faster than the 845, which is faster than the 835, which is slower than the 820. What? Their performance dropped in that generation?
    Reply
  • yeeeeman - Wednesday, January 16, 2019 - link

    Yes. In floating point, the SD820 based on their own custom cores (built on an evolution of Krait cores called Kryo) was much better than everything, including next gen SD835 which used an IP from ARM the cortex A72. Reply
  • fred666 - Wednesday, January 16, 2019 - link

    so it pretty much means their graph is worthless. Floating point should not be the primary indicator of performance, integers are much more used by most popular use cases Reply
  • Spunjji - Wednesday, January 16, 2019 - link

    He didn't say the graph shows FP performance, he just mentioned that 820 was unusually strong in that area. My guess is it's a representation of overall performance based on some or other standard benchmark. That doesn't make it "worthless", because it's literally only there to show a rough comparison between historical chipsets. Reply
  • cpkennit83 - Thursday, January 17, 2019 - link

    Actually it was the A73. The A72 is actually stronger in fp but slower in integer workloads Reply
  • stennan - Tuesday, January 15, 2019 - link

    Please do a podcast soon. There has been so much going on with pc Cpu/gpu and now incoming mobile cpu that I miss having the anandtech deep dive! Reply
  • melgross - Tuesday, January 15, 2019 - link

    Well, it’s all very interesting, but still the elephant in the room is Apple’s A series, no matter what. Take that out, and the 855 and 980 are excellent chips, but with it in, they are just mediocre. Reply
  • cpkennit83 - Tuesday, January 15, 2019 - link

    They are excellent chips no matter what. A12 big cores are twice as large or more than a76 cores.
    No android Oem is willing to pay a big premium for their flagship socs, so the qualcomms and huaweis of the world don't pressure arm to spend the big $$ needed to fund the development of truly wide cores. The only one who seems interested in going big is Samsung, but they can't get their act together.

    Still performance is more than adecuate in the a76 flagship SOCS, and efficiency is slightly better than a12, so for me this generation is the best in the android space since the SD800.
    Reply

Log in

Don't have an account? Sign up now