GPU Performance & Power

GPU performance of the new Adreno 640 in the Snapdrago 855 is interesting: The company’s performance claims were relatively conservative as they showcased that the new unit would perform only 20% better than its predecessor. This is a relatively low figure given that Qualcomm also advertises that the new GPU sees a 50% increase in ALU configuration, as well as of course coming on a new 7nm process which should give the SoC a lot of new headroom.

Before discussing the implications in more detail, let’s see the performance numbers in the new GFXBench Aztec benchmarks.

As a reminder, we were only able to test the peak performance of the phone as we didn’t have time for a more thorough sustained performance investigation.

GFXBench Aztec Ruins - High - Vulkan/Metal - Off-screenGFXBench Aztec Ruins - Normal - Vulkan/Metal - Off-screen

Both Aztec High and Normal results fall pretty much in line with Qualcomm’s advertised 20% improvement over the Snapdragon 845. Here the new chipset falls behind Apple’s A11 and A12 chips – although power consumption at peak levels is very different as we’ll see in just a bit.

GFXBench Manhattan 3.1 Off-screen

GFXBench Manhattan 3.1 Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone XS (A12) Warm 7FF 76.51 3.79 20.18 fps/W
iPhone XS (A12) Cold / Peak 7FF 103.83 5.98 17.36 fps/W
Snapdragon 855 QRD 7FF 71.27 4.44 16.05 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 61.16 5.01 11.99 fps/W
Huawei Mate 20 Pro (Kirin 980) 7FF 54.54 4.57 11.93 fps/W
Galaxy S9 (Exynos 9810) 10LPP 46.04 4.08 11.28 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 38.90 3.79 10.26 fps/W
LeEco Le Pro3 (Snapdragon 821) 14LPP 33.04 4.18 7.90 fps/W
Galaxy S7 (Snapdragon 820) 14LPP 30.98 3.98 7.78 fps/W
Huawei Mate 10 (Kirin 970) 10FF 37.66 6.33 5.94 fps/W
Galaxy S8 (Exynos 8895) 10LPE 42.49 7.35 5.78 fps/W
Galaxy S7 (Exynos 8890) 14LPP 29.41 5.95 4.94 fps/W
Meizu PRO 5 (Exynos 7420) 14LPE 14.45 3.47 4.16 fps/W
Nexus 6P (Snapdragon 810 v2.1) 20Soc 21.94 5.44 4.03 fps/W
Huawei Mate 8 (Kirin 950) 16FF+ 10.37 2.75 3.77 fps/W
Huawei Mate 9 (Kirin 960) 16FFC 32.49 8.63 3.77 fps/W
Huawei P9 (Kirin 955) 16FF+ 10.59 2.98 3.55 fps/W

Switching over to the power efficiency table in 3D workloads, we see Qualcomm take the lead in terms of power efficiency at peak performance, only trailing behind Apple's newest A12. What is most interesting is the fact that the Snapdragon 855’s overall power consumption has gone down compared to the Snapdragon 845 – now at around 4.4W versus the 5W commonly measured in S845 phones.

GFXBench T-Rex 2.7 Off-screen

T-Rex’s performance gains are more limited because the test is more pixel and fill-rate bound. Here Qualcomm made a comment about benchmarks reaching very high framerates as they become increasingly CPU bound, but I’m not sure if that’s actually a problem yet as GFXBench has been traditionally very CPU light.

GFXBench T-Rex Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone XS (A12) Warm 7FF 197.80 3.95 50.07 fps/W
iPhone XS (A12) Cold / Peak 7FF 271.86 6.10 44.56 fps/W
Snapdragon 855 QRD 7FF 167.19 3.83 43.65 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 150.40 4.42 34.00 fps/W
Galaxy S9 (Exynos 9810) 10LPP 141.91 4.34 32.67 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 108.20 3.45 31.31 fps/W
Huawei Mate 20 Pro (Kirin 980) 7FF 135.75 4.64 29.25 fps/W
LeEco Le Pro3 (Snapdragon 821) 14LPP 94.97 3.91 24.26 fps/W
Galaxy S7 (Snapdragon 820) 14LPP 90.59 4.18 21.67 fps/W
Galaxy S8 (Exynos 8895) 10LPE 121.00 5.86 20.65 fps/W
Galaxy S7 (Exynos 8890) 14LPP 87.00 4.70 18.51 fps/W
Huawei Mate 10 (Kirin 970) 10FF 127.25 7.93 16.04 fps/W
Meizu PRO 5 (Exynos 7420) 14LPE 55.67 3.83 14.54 fps/W
Nexus 6P (Snapdragon 810 v2.1) 20Soc 58.97 4.70 12.54 fps/W
Huawei Mate 8 (Kirin 950) 16FF+ 41.69 3.58 11.64 fps/W
Huawei P9 (Kirin 955) 16FF+ 40.42 3.68 10.98 fps/W
Huawei Mate 9 (Kirin 960) 16FFC 99.16 9.51 10.42 fps/W

Again switching over to the power and efficiency tables, we see that the Snapdragon 855 is posting a ~30% efficiency boost over the Snapdragon 845, all while slightly improving performance.

Overall, I’m very happy with the initial performance and efficiency results of the Snapdragon 855. The S845 was a bit disappointing in some regards because Qualcomm had opted to achieve the higher performance figures by increasing the peak power requirements compared to exemplary thermal characteristics of the Snapdragon 835. The new chip doesn’t quite return to the low power figures of that generation, however it meets it half-way and does represent a notable improvement over the Snapdragon 845.

System Performance - Slightly Underwhelming? Final Thoughts
Comments Locked

132 Comments

View All Comments

  • Midwayman - Wednesday, January 16, 2019 - link

    People would have said that about AMD not long ago.... Just saying.
  • 29a - Wednesday, January 16, 2019 - link

    They used the same engineer, Jim Keller. He works for Intel now.
  • Midwayman - Wednesday, January 16, 2019 - link

    Eventually, sure. Apple will stall out on process related stuff eventually and they'll have a chance to catch up. Unlikely until then as they're still making big gains too and have a 2-3 year lead.
  • jjj - Tuesday, January 15, 2019 - link

    We need a bit more on the GPU side in the next years for foldable. Pixel count will increase, SoC power needs to decrease (more power and mechanical volume goes towards the display) and mobile gaming should gain in popularity with x2+ larger displays.
  • levizx - Tuesday, January 15, 2019 - link

    We can establish that single core performance/power is good, but what about multi-core? Wouldn't the other 3 big core be running at the highest voltage while potentially running at ~2GHz in real world workload?
  • Andrei Frumusanu - Tuesday, January 15, 2019 - link

    Correct. We'll have to see how efficiency performs once we get commercial devices.
  • Chaser - Tuesday, January 15, 2019 - link

    We read about all this when the 845 was about to launch a year ago. I didn't see some monumental improvement in responsiveness or efficiency despite all these whitepapers stating so. Unless you are so kind of smartphone gaming fanatic, real-world use differences between each year look great mostly on paper.
  • SquarePeg - Tuesday, January 15, 2019 - link

    Performance has been good enough since 2013 with the release of the SD 800. Every year we get a performance bump that just gets offset by feature bloat that doesn't really improve performance outside of benchmarks. I can pull out my old LG G2 running an Android 4.4.2 custom ROM/kernel and that thing just flies compared to any phone from the past year.
  • A5 - Tuesday, January 15, 2019 - link

    I promise you it won’t. SD 800 will feel terrible
  • yeeeeman - Wednesday, January 16, 2019 - link

    I have a Z3 compact, which is a SD801. Bought recently a Galaxy S7 second hand to replace the Z3. I can safely say that the Exynos 8890 is noticeably faster in opening apps, playing intensive games and generally in multitasking. Z3 usually lags when phone is started for first time and many apps sync. Galaxy S7 is buttery smooth. So yeah, I think we can feel the progress in performance of these chips, but maybe at a later point when apps get to their limit of computing power. Then you actually see that a newer chipset is noticeably faster.
    But nevertheless, the Z3 compact with SD801 is still a great fast phone. It runs a bit slower than the Exynos as I said but in general it is not slow at all on Android 6.0. So yeah, a chipset like it could be easily used in today's times if you don't a bit of slow down here and there.

Log in

Don't have an account? Sign up now