AnandTech Storage Bench - The Destroyer

The Destroyer is an extremely long test replicating the access patterns of very IO-intensive desktop usage. A detailed breakdown can be found in this article. Like real-world usage, the drives do get the occasional break that allows for some background garbage collection and flushing caches, but those idle times are limited to 25ms so that it doesn't take all week to run the test. These AnandTech Storage Bench (ATSB) tests do not involve running the actual applications that generated the workloads, so the scores are relatively insensitive to changes in CPU performance and RAM from our new testbed, but the jump to a newer version of Windows and the newer storage drivers can have an impact.

We quantify performance on this test by reporting the drive's average data throughput, the average latency of the I/O operations, and the total energy used by the drive over the course of the test.

ATSB - The Destroyer (Data Rate)

The 1TB Samsung 860 QVO does not handle The Destroyer very well, with an average data rate that is slightly slower than the DRAMless TLC drive. By comparison, the NVMe QLC drives from Intel and Micron are only slightly slower than the 860 EVO and MX500.

ATSB - The Destroyer (Average Latency)ATSB - The Destroyer (99th Percentile Latency)

The QLC drives in general stand out more when looking at latency metrics than throughput, and especially when looking at 99th percentile latencies. The 1TB 860 QVO comes in last place for both average and 99th percentile latency, and all three QLC drives have worse 99th percentile latency than the DRAMless TLC drive.

ATSB - The Destroyer (Average Read Latency)ATSB - The Destroyer (Average Write Latency)

The average read and write latencies of the 860 QVO are both only slightly worse than the DRAMless TLC SSD. The NVMe QLC drives are slightly faster than the mainstream SATA drives for read latency but fall behind in average write latency.

ATSB - The Destroyer (99th Percentile Read Latency)ATSB - The Destroyer (99th Percentile Write Latency)

The 860 QVO actually doesn't come in last place for 99th percentile write latency, and in fact scores far better than the DRAMless TLC drive. However, the QLC drives are all still far worse off than the mainstream TLC SATA drives.

ATSB - The Destroyer (Power)

With low performance dragging out the test to a far longer duration, it's no surprise that the QLC drives all use much more energy over the course of The Destroyer than most SATA drives. The DRAMless Toshiba TR200 is an impressive exception that manages to be very efficient despite its low overall performance.

SLC Cache Sizes & Energy Consumption AnandTech Storage Bench - Heavy
Comments Locked

109 Comments

View All Comments

  • 0ldman79 - Saturday, December 15, 2018 - link

    I found some answers to that question on the Bench.

    https://www.anandtech.com/bench/product/2339?vs=22...

    Load time, file copy times, etc, I guess more day to day testing would be appreciated. The spinner does a decent job on the BAPCo tests.

    I'm wondering if the QLC will really improve my load times vs my 2TB mechanical drive that sustains nearly 200MBps read speeds in practice.
  • ewitte - Thursday, March 28, 2019 - link

    Who in their right mind would purchase a QVO drive when the EVO is similarly priced? These drives perform poorly and have horrible longevity. 160MB/s writes after the cache!!!! I will not even touch the smaller EVO drives because the write speed is so low (500GB is ok but 1TB is so affordable now it is my minimum).
  • Sanmayce - Friday, March 29, 2019 - link

    Anand, please consider debunking the myth of data retention being limited to a few months.

    Really, where this myth originates from, f.e. if one buys QVO for backups what is the safe-time-between-losing-data?

    My proposal is to fill the drive with 900GB 7z archive and test the integrity after, say, 6 months.

    I myself am planning to buy the 1TB QVO just to find how durable it is under superheavy REAL-WORLD random read/writes - QD1. By the way, you are using 16GB spans in your tests, but the SLC is bigger than that, don't you see a problem?
  • bobhumplick - Thursday, May 16, 2019 - link

    so if the intel 660p and the smasung qvo are the same price which one do you get?
  • praveenvj - Friday, July 26, 2019 - link

    Now that price has dropped to $400 for 4TB, does this make sense compared to EVO for daily driver PC?
  • southleft - Monday, August 19, 2019 - link

    Here we are about 9 months later - August 2019 - and the price of Intel's 660p 1TB model has dropped by 50% when it's on sale. So, for $85 - $95 you can get an NVMe drive with, say, 750GB of usable capacity and it will blow all of these SATA SSDs out of the water. In other words, if you don't fill the drive over about 75% full you'll have a smokin' fast rig.
  • problemchild - Wednesday, October 23, 2019 - link

    As a professional many comments here disregard what these drives are intended for and for obvius reasons you wouldn't want to buy them for a server array or high availability applications. Samsung has entered a product which is now competing with lower priced product \ brands. For the average consumer looking for a Samsung branded drive to be used as a basic storage drive for documents, photos, music and game storage it makes a lot of sense. Admittedly IMHO buying a 2TB SSD for general storage use at the $200 mark is extreme in comparison to $80 for a spinner but for some users but for gamers it may be worth the price to use as game storage drive.
  • Scour - Sunday, June 28, 2020 - link

    Question: If the SLC-cache is full, the speed drops, that´s clear. But what happened if the SSD have a power loss directly after the data-writing ends? Is all Data still accessable on the SSD (because data still have to be copied from the SLC-cache to the QLC)?
  • leexgx - Thursday, August 6, 2020 - link

    did they ever issue a firmware update with the 4TB QVO, EVO and Pro samsung ssds been problematic sometimes not working

Log in

Don't have an account? Sign up now