CPU Performance: SPEC2006 at 2.2 GHz

Aside from power, the other question is if the Cannon Lake microarchitecture is an efficient design. For most code paths, it holds the same core design elements as Skylake and Kaby Lake, and it does have additional optimizations for certain instructions, as we detailed earlier in this review. In order to do a direct IPC comparison, we are running SPEC2006 Speed on both of our comparison points at a fixed frequency of 2.2 GHz.

In order to get a fixed frequency on our chips required adjusting the relevant registers to disable the turbo modes. There is no setting in the BIOS to do this, but thankfully the folks at AIDA64 have a tool to do this and it works great. Choosing these two processors that both have a base frequency of 2.2 GHz make this a lot easier.

SPEC2006 is a series of industry standard tests designed to help differentiate performance levels between different architectures, microarchitectures, and compilers. All official submitted results from OEMs and manufacturers are posted online for comparison, and many vendors try and get the best results. From our perspective, these workloads are very well known, which enables a good benchmark for IPC analysis.

Credit for arranging the benchmarks goes completely to our resident Senior Mobile Editor, Andrei Frumusanu, who developed  a suitable harness and framework to generate the relevant binaries for both mobile and PC. On PC, we run SPEC2006 through the Windows Subsystem for Linux – we still need to do testing for overhead (we’ll do it with SPEC2017 when Andrei is ready), but for the purposes of this test today, comparing like for like both under WSL is a valid comparison. Andrei compiled SPEC2006 for AVX2 instructions, using Clang 8. We run SPEC2006 Speed, which runs one copy of each test on one thread, of all the integer tests as well as the C++ based floating point tests.

Here are our results:

SPEC2006 Speed
(Estimated Results)*
Intel Core i3-8121U
10nm Cannon Lake
AnandTech Intel Core i3-8130U
14nm Kaby Lake
Integer Workloads
24.8 400.perlbench 26.1
16.6 401.bzip2 16.8
27.6 403.gcc 27.3
25.9 429.mcf 28.4
19.0 445.gobmk 19.1
23.5 456.hmmr 23.1
22.2 458.sjeng 22.4
70.5 462.libquantum 75.4
39.7 464.h264ref 37.2
17.5 471.omnetpp 18.2
14.2 473.astar 14.1
27.1 483.xalancbmk 28.4
Floating Point Workloads
24.6 433.milc 23.8
23.0 444.namd 23.0
39.1 450.soplex 37.3
34.1 453.povray 33.5
59.9 470.lbm 68.4
43.2 482.sphinx3 44.2

* SPEC rules dictate that any results not verified on the SPEC website are called 'estimated results', as they have not been verified.

By and large, we actually get parity between both processors on almost all the tests. The Kaby Lake processor seems to have a small advantage in libquantum and lbm, which are SIMD related, which could be limited by the memory latency difference shown on the previous page.

CPU Performance: Memory and Power Stock CPU Performance: System Tests
Comments Locked

129 Comments

View All Comments

  • bananaforscale - Thursday, January 31, 2019 - link

    A single 10nm SKU, and it has the GPU fused off? Why bother even taping it out then when you're using a different process node?
  • Trevor08 - Friday, February 1, 2019 - link

    For intel's sake (and ours), I hope they're working furiously on quantum CPU's.
  • talktowendys - Saturday, February 2, 2019 - link

    This is the best processor to work on. Me myself uses this processor it is the best technology.
    You can check our blog.
  • El Sama - Monday, February 4, 2019 - link

    Maybe it will be great once 10nm+++++++ is released?
  • cheshirster - Saturday, June 22, 2019 - link

    So what is actual density of Canon Lake?

Log in

Don't have an account? Sign up now