What’s Next for GlobalFoundries?

In lieu of pursuing a 7nm platform, GlobalFoundries will be embarking on a multifaceted strategy for revenue and profitability. This strategy includes scaling out the 14LPP/12LP platform for various applications that are set to emerge in the 5G era, continuing to evolve the FD-SOI platform, spinning off its ASIC development business, further supporting its existing clients with their 14LPP/12LP products, and some other things.

Scaling Out the 14LPP/12LP

Originally designed for mobile SoCs and some other chips in mind, GlobalFoundries' 14LPP manufacturing technology is used to make CPUs and GPUs at GlobalFoundries. Furthermore, the company has designed two variations of this fabrication process. Whereas the base process used up to 13 metal layers and 9T libraries, 14HP was developed specifically for IBM and tailored for performance at the cost of transistor density, using up to 17 metal layers and 12T libraries. Meanwhile, 12LP — aimed at a broad spectrum of applications, including APUs/CPUs, automotive and other — uses 13 layers and 7.5T libraries, giving a 10% additional performance or power improvement as well as a 15% area reduction vs. the 14LPP.

Going forward, GlobalFoundries plans to offer a broader spectrum of technologies based on its 14 nm node. The move is not truly surprising. Samsung Foundry also offers three versions of its 14 nm processes: 14LPP for high-performance SoCs, 14LPC for compact SoCs, and 14LPU for ultra-low-power chips. So far, GlobalFoundries has confirmed three key markets of its future FinFET process technologies: RF, embedded memory, and low-power. In addition, the company plans to offer its 14LPP/12LP platform with enhanced performance and/or higher transistor density (for cost reduction). To do so, the company will be leveraging the knowledge and techniques they developed as part of the 7LP platform. But naturally Gary Patton does not want to disclose the nature of these innovations or any actual performance targets.

If the company succeeds in the integration of RF capabilities into FinFET-based chips, that will be a world’s first. In theory, such chips would have a notable edge over existing RF solutions, which are made using rather rough process technologies. In addition to regular RF capabilities, GlobalFoundries plans to offer features for mmWave radios. Embedded MRAM will also be another important feature of SoCs made using a FinFET fabrication tech as, again, nobody uses such transistors for embedded memory right now.

At the moment, GlobalFoundries is still forming its new development teams, so we do not know exactly how many projects the company will eventually work on. Meanwhile, keep in mind that any project started today will materialize at best in 2020, with actual products going into HVM in 2021. This will be in time for various devices for high-growth markets, but AMD will naturally wind down its 14LPP/12LP orders to GlobalFoundries over the 2019 – 2020 timeframe, reducing the company’s revenue and profits. Note that at present both the RF and embedded memory technologies for FinFET are in a pathfinding stage, so it is very hard to say when exactly GlobalFoundries comes up with appropriate process technologies.

Investing in FD-SOI

In addition to developing specialized versions of its FinFET-based process technologies, GlobalFoundries will continue to invest in its FDX-branded FD SOI-based platforms, such as 22FDX and 12FDX. Gary Patton did not pre-announce any new versions of the company’s FD-SOI fabrication processes, but clearly indicated that the FDX will remain very important for GlobalFoundries, which is not surprising as GF and Samsung Foundry are the only foundries to offer this tech.

Spinning Off ASICs

Designing chips for a new process technology is always a challenge both from engineering and financial points of view, especially for smaller companies. In a bid to help its customers to develop various SoCs, GlobalFoundries established its ASIC Solutions (ASICs) division, which helps the company’s customers in designing chips. Besides usual things like process development kits (PDKs), various design libraries, silicon-proven memory solutions, interfaces, and other necessary things, ASICs offers support from chip design, methodology, test and packaging teams.

Obviously, GlobalFoundries’ customers going forward will benefit from ASICs IP and teams. However, to ensure that the division continues to attract high-volume work, GlobalFoundries will spin it off and enable it to work with process technologies from other contract makers of semiconductors.

The Fate of EUV Tools

One of the questions we asked GlobalFoundries during a briefing concerning its strategic shift was about the fate of two ASML Twinscan NXE machines installed in Fab 8. At this point the company has not made any decisions, but it intends to consult with ASML and find out what would be the best use of these tools. In theory, GlobalFoundries could keep them to speed up prototyping or even production, but since they require a special treatment, keeping them without using them extensively for HVM may not be a good idea.

Some Thoughts

Until today, GlobalFoundries, Samsung Foundry, and TSMC were the only three remaining contract makers of semiconductors to offer leading-edge process technologies for logic. With GF dropping out from the race, Samsung and TSMC will be the only contract foundries remaining. (While Intel technically has foundry operations, they've had minimal impact on the industry).

For GlobalFoundries, the move has pros and cons. On the one hand the lion’s share of semiconductor industry revenue will be earned from chips made using ’12 nm’ and larger nodes even in 2022, according to Gartner’s findings and cited by GlobalFoundries. Evidently, by not competing for the leading edge, GF will reduce its R&D costs and necessity to build ultra-expensive EUV fabs for 2020 and onwards. Moreover, with specialized technologies sometimes tailored for particular clients, the company will better avoid directly competing against Samsung and TSMC in certain cases. Nonetheless, said foundries are going to compete for emerging devices as well, so they are going to design their own specialized fabrication processes (Samsung in particular will need them for itself). Therefore, GlobalFoundries is not exactly jumping into a blue ocean here.

What remains to be seen is how well GlobalFoundries manages to execute on the timely development of multiple new manufacturing processes and land new customers to fill Fab 8. The company will keep working with AMD for many years to come in fabbing current-generation CPUs and GPUs, and then switching exclusively to wafers with embedded APUs/GPUs as well as with first-gen EPYC dies, as these products have very long lifecycles. However, the number of wafers GlobalFoundries processes for AMD will be dropping rapidly starting from 2019. Whether GF will be able to substitute AMD’s orders with orders from enough smaller players to Fab 8 full utilized is something only time will tell.

While it is sad to see GlobalFoundries leaving the ‘bleeding edge’ field, it is evident that the company’s odds against Samsung and TSMC were not high enough for the owner and the management to take the risks. Therefore, it looks like ‘scaling out’ by offering a set of specialized (and maybe even unique) process technologies instead of ‘scaling up’ and offer another ‘bleeding edge’ node might just be a better bet for GlobalFoundries.

Related Reading:

7LP Canned Due to Strategy Shift GlobalFoundries Press Release
Comments Locked

127 Comments

View All Comments

  • drwho9437 - Tuesday, August 28, 2018 - link

    The first shoe has dropped.

    I used to work for IBM Research, though not in the part they sold to Global Foundries, but in the part where they invented the new wrinkles to make better transistors and such. I finished my doctorate in 2012. It was just about a year after I finished that the deal with GF was announced. When this happened I was not sure how much longer IBM would invest in the physical science research for such things. They promised five years I believe. But it made me think about the business case for transistors and I concluded there was not much of a future left.

    Simply put quantum effects and statistical effects hurt you more and more as you go smaller, it also blows up in cost. We can debate the end of Silicon scaling till we are blue in the face. Will it be 7 nm or 5 nm or will it be 10-12-14 or something else. It doesn't matter costs go up and amortizing your cost is the better business play at some point.

    Can we research something to replace Silicon? Yes. But silicon has 40+ years of investment, you are not likely to invent a technology to overtake it in a few years or for a few dollars. Do you choose to invest in research or driving down the cost of building 14 nm fabs?

    I though there would be a break point in 5-6 years where the CEOs would have to choose: amortize or invest a massive amount in researching something totally new. I fully expected them to choose the former. GF just did. Will Intel or Samsung choose differently? I doubt it. Which means a big brick wall is coming. Mr. Moore we have reached the end.
  • evanh - Tuesday, August 28, 2018 - link

    My sole argument is economies of scale is what defines the cost.
  • evanh - Tuesday, August 28, 2018 - link

    My sole argument is economies of scale is what defines the cost.
  • Follower - Wednesday, August 29, 2018 - link

    If future need to be in our hands, then 7nm drop out may not be a good idea though, as it plays a major role after 5-10 years.
  • richmaxw - Wednesday, August 29, 2018 - link

    IBM paid Global Foundries $1.5 billion to take over their foundries. They also gave them patents. In return, Global Foundries said they would provide IBM 10 nm CPUs. How are Global Foundries not in breach of that agreement? AMD is obligated to buy a certain number of CPUs from Global Foundries each year. If they don't buy the minimum amount, they have to pay anyway. But what if Global Foundries is producing out-of-date products? Would AMD have signed that agreement knowing GF was going to just give up on research suddenly? Not only is this decision a waste of the research and development they have already put into 7 nm, it also appears to be dishonest and underhanded to IBM and AMD. I hope they are compensating IBM and AMD for going back on their word.
  • Holliday75 - Wednesday, August 29, 2018 - link

    Looking back at previous announcements I am now under the impression that AMD and most likely IBM have known this was coming a long ways off so they could adjust their strategies as needed.

    As to the agreements in place, if AMD and/or IBM were getting screwed over due to this change I am sure a lawsuit would have already been announced.
  • Alien959 - Wednesday, August 29, 2018 - link

    What i find interesting is that their 7nm process is more or less developed and surly that has some value to someone that has deep pockets and want to be even more vertical integrated like apple. Yes its a huge investment, but does anadtech readership thinks there is a chance that Apple would be interested in getting in the fab business.
  • eastcoast_pete - Wednesday, August 29, 2018 - link

    Apple tied itself to TSMC (and vice versa). In return for Apple booking huge quantities and making TSMC their exclusive supplier, TSMC gave Apple first right of refusal for their 7 nm capacity. They both took a risk, but that deal deal gave TSMC what GloFo was missing: a full order book for 7 nm silicon with the attached large, guaranteed revenue stream (many billions of $$$) that made TSMC's investing the necessary multi-billion $$$ into 7 nm tech possible. Right now, I simply don't know any other (fabless) company except Apple that would (or could) sign a two-figure billion dollar purchase order like that; AMD simply doesn't have anywhere near that volume, or the financial muscle, and it looks like even Qualcomm and Huawei had to settle for 7 nm table scraps at TSMC's.
    While some here have commented on the coming end of Moore's Law, that scenario may have to be amended: in addition to physical limitations to how much one can shrink semiconductor structures, it looks more and more that the costs of shrinking nodes will put the brakes on that development even before we hit the actual physical limits.
    @Anandtech: if you guys have the numbers, could you publish a plot of node sizes/nm vs. estimated costs to get a fab up-and-running. This seems to approach an (inverse) exponential function as we go from 14 nm to 10 nm to now 7 nm.
  • Sahrin - Wednesday, August 29, 2018 - link

    GF has been very aggressive in growing the company through private equity acquisition - which means debt, which means interest payments. It'd be interesting to see how the transaction and financing costs of the acquisitions factor into this.

    GF would not be the first company sunk by ownership's shitty business strategy. Blaming it all on R&D is the idiot's way out. AMD, eg, was sunk by borrowing to buy ATI - not by overspending on R&D.
  • del42sa - Thursday, August 30, 2018 - link

    bunch of loosers....

Log in

Don't have an account? Sign up now