HEDT Benchmarks: Web and Legacy Tests

While more the focus of low-end and small form factor systems, web-based benchmarks are notoriously difficult to standardize. Modern web browsers are frequently updated, with no recourse to disable those updates, and as such there is difficulty in keeping a common platform. The fast paced nature of browser development means that version numbers (and performance) can change from week to week. Despite this, web tests are often a good measure of user experience: a lot of what most office work is today revolves around web applications, particularly email and office apps, but also interfaces and development environments. Our web tests include some of the industry standard tests, as well as a few popular but older tests.

We have also included our legacy benchmarks in this section, representing a stack of older code for popular benchmarks.

WebXPRT 3: Modern Real-World Web Tasks, including AI

The company behind the XPRT test suites, Principled Technologies, has recently released the latest web-test, and rather than attach a year to the name have just called it ‘3’. This latest test (as we started the suite) has built upon and developed the ethos of previous tests: user interaction, office compute, graph generation, list sorting, HTML5, image manipulation, and even goes as far as some AI testing.

For our benchmark, we run the standard test which goes through the benchmark list seven times and provides a final result. We run this standard test four times, and take an average.

Users can access the WebXPRT test at http://principledtechnologies.com/benchmarkxprt/webxprt/

WebXPRT 3 (2018)

WebXPRT 2015: HTML5 and Javascript Web UX Testing

The older version of WebXPRT is the 2015 edition, which focuses on a slightly different set of web technologies and frameworks that are in use today. This is still a relevant test, especially for users interacting with not-the-latest web applications in the market, of which there are a lot. Web framework development is often very quick but with high turnover, meaning that frameworks are quickly developed, built-upon, used, and then developers move on to the next, and adjusting an application to a new framework is a difficult arduious task, especially with rapid development cycles. This leaves a lot of applications as ‘fixed-in-time’, and relevant to user experience for many years.

Similar to WebXPRT3, the main benchmark is a sectional run repeated seven times, with a final score. We repeat the whole thing four times, and average those final scores.

WebXPRT15

Speedometer 2: Javascript Frameworks

Our newest web test is Speedometer 2, which is a accrued test over a series of javascript frameworks to do three simple things: built a list, enable each item in the list, and remove the list. All the frameworks implement the same visual cues, but obviously apply them from different coding angles.

Our test goes through the list of frameworks, and produces a final score indicative of ‘rpm’, one of the benchmarks internal metrics. We report this final score.

Speedometer 2

Google Octane 2.0: Core Web Compute

A popular web test for several years, but now no longer being updated, is Octane, developed by Google. Version 2.0 of the test performs the best part of two-dozen compute related tasks, such as regular expressions, cryptography, ray tracing, emulation, and Navier-Stokes physics calculations.

The test gives each sub-test a score and produces a geometric mean of the set as a final result. We run the full benchmark four times, and average the final results.

Google Octane 2.0

Mozilla Kraken 1.1: Core Web Compute

Even older than Octane is Kraken, this time developed by Mozilla. This is an older test that does similar computational mechanics, such as audio processing or image filtering. Kraken seems to produce a highly variable result depending on the browser version, as it is a test that is keenly optimized for.

The main benchmark runs through each of the sub-tests ten times and produces an average time to completion for each loop, given in milliseconds. We run the full benchmark four times and take an average of the time taken.

Mozilla Kraken 1.1

3DPM v1: Naïve Code Variant of 3DPM v2.1

The first legacy test in the suite is the first version of our 3DPM benchmark. This is the ultimate naïve version of the code, as if it was written by scientist with no knowledge of how computer hardware, compilers, or optimization works (which in fact, it was at the start). This represents a large body of scientific simulation out in the wild, where getting the answer is more important than it being fast (getting a result in 4 days is acceptable if it’s correct, rather than sending someone away for a year to learn to code and getting the result in 5 minutes).

In this version, the only real optimization was in the compiler flags (-O2, -fp:fast), compiling it in release mode, and enabling OpenMP in the main compute loops. The loops were not configured for function size, and one of the key slowdowns is false sharing in the cache. It also has long dependency chains based on the random number generation, which leads to relatively poor performance on specific compute microarchitectures.

3DPM v1 can be downloaded with our 3DPM v2 code here: 3DPMv2.1.rar (13.0 MB)

3DPM v1 Single Threaded3DPM v1 Multi-Threaded

x264 HD 3.0: Older Transcode Test

This transcoding test is super old, and was used by Anand back in the day of Pentium 4 and Athlon II processors. Here a standardized 720p video is transcoded with a two-pass conversion, with the benchmark showing the frames-per-second of each pass. This benchmark is single-threaded, and between some micro-architectures we seem to actually hit an instructions-per-clock wall.

x264 HD 3.0 Pass 1x264 HD 3.0 Pass 2

HEDT Benchmarks: Encoding Tests Power Consumption, TDP, and Prime95 vs POV-Ray
Comments Locked

171 Comments

View All Comments

  • eva02langley - Tuesday, August 14, 2018 - link

    You don't get it, it is a proof of concept and a disruptive tactic to get notice for people to consider AMD in the future... and it works perfectly.
  • KAlmquist - Thursday, August 16, 2018 - link

    That's what I meant by “bragging rights.”
  • eva02langley - Thursday, August 16, 2018 - link

    You are missing the business standpoint, the stakeholders and the proof of concept.

    Nvidia is surfing on AI, however the only thing they did so far is selling GPU during a mining craze, however people drink their coolaid and the investors are all over them. The hangover is going to be hard.
  • Lolimaster - Monday, August 13, 2018 - link

    If you're a content creator the Threaripper 2950X is you bitch, period.
  • MrSpadge - Tuesday, August 14, 2018 - link

    Ian, does the power consumption of uncore (IF + memory controller) scale with IF + memory controller frequency? I would expect so. And if not: maybe AMD is missing on huge possible power savings at lower frequencies. Not sure if overall efficiency could benefit from that, though, as performance and power would simulataneously regress.
  • dynamis31 - Tuesday, August 14, 2018 - link

    It's not all silicon !
    Windows OS and applications running on that OS may also be software optimised for more 2990WX workloads as you can see below :
    https://www.phoronix.com/forums/forum/phoronix/lat...
  • dmayo - Tuesday, August 14, 2018 - link

    Meanwhile, in Linux 2990WX destroyed competition.

    https://www.phoronix.com/scan.php?page=article&...
    https://www.phoronix.com/scan.php?page=article&...
  • eva02langley - Tuesday, August 14, 2018 - link

    I am beginning to ask myself if this is related to Windows. Or maybe the bench suites reliability toward such a unique product.

    But yeah, these results are insane.
  • MrSpadge - Tuesday, August 14, 2018 - link

    Crazy results, indeed. And quite believable, considering how well the 16 core TR fares in comparison in many windows benches. I suspect the scheduler is not yet tuned for the new architecture with 2 different NUMA levels.

    And for at least parts of the benchmarks I suspect something a lot less technical is happening: Phoronix can only bench cross-platform software for this comparison. However, hardly any Windows programmer is regularly building Linux versions. That leaves just another option: Linux programs which also got a Windows build. And considering how downright hostile Linux fans can be towards Windows and anything Microsoft-related, I wouldn't be surprised if the tuning going into these compilations was far from ideal. Some of these guys really enjoy shouting out loud that they don't have access to any Windows machine to test their build (which they only did to stop the requests flooding their inbox) and to shove down their users throat that Windows is a second class citizen in their world. This point is reinforced by the wierd names of many of the benchmarks - except 7-zip, is anyone using those programs?
  • GreenReaper - Wednesday, August 15, 2018 - link

    Most aren't dedicated benchmarks, they're useful programs being run as such:
    * x264 powers most CPU-based H.264/AVC video encoding. Steam uses it, for example.
    * GraphicsMagick is a fork of ImageMagick, one of which is used in a large number of websites (probably including this one) for processing images.
    * FFmpeg is for audio and video processing.
    * Blender is a popular open-source rendering tool.
    * Minion is for constraint-solving (e.g. the four-colour map problem).

    Many aren't the kind of things you'd run on a regular desktop - but a workstation, sure. They are CPU-intensive parallel tasks which scale - or you hope will scale - with threads.

Log in

Don't have an account? Sign up now