Mixed Random Performance

Our test of mixed random reads and writes covers mixes varying from pure reads to pure writes at 10% increments. Each mix is tested for up to 1 minute or 32GB of data transferred. The test is conducted with a queue depth of 4, and is limited to a 64GB span of the drive. In between each mix, the drive is given idle time of up to one minute so that the overall duty cycle is 50%.

Mixed 4kB Random Read/Write

The mixed random I/O performance of the Intel SSD 660p is clearly above the other low-end NVMe drives we've tested, or the Crucial MX500 SATA drive. It scores closer to a mid-range NVMe SSD. After filling the drive, performance is cut in half, leaving it performing near low-end NVMe drives like the Phison E8-based Kingston A1000 and below the MX500.

Sustained 4kB Mixed Random Read/Write (Power Efficiency)
Power Efficiency in MB/s/W Average Power in W

The power efficiency of the 660p during the mixed random I/O test is unimpressive but doesn't stand out as being significantly worse that other low-end NVMe drives even when the test is run on a full drive.

The Intel SSD 660p shows very slow performance growth throughout most of the test, but it picks up speed reasonably well toward the end as the workload shifts toward pure writes, and the SLC cache handles things well. When the drive is full, the reduced capacity of the SLC cache prevents speed from increasing much.

Mixed Sequential Performance

Our test of mixed sequential reads and writes differs from the mixed random I/O test by performing 128kB sequential accesses rather than 4kB accesses at random locations, and the sequential test is conducted at queue depth 1. The range of mixes tested is the same, and the timing and limits on data transfers are also the same as above.

Mixed 128kB Sequential Read/Write

The Intel SSD 660p performs better than other entry-level NVMe SSDs or SATA drives when the mixed sequential I/O test is run on a mostly empty drive with a large SLC cache. After the drive is filled, performance drops down to slightly ahead of the 600p and Crucial MX500.

Sustained 128kB Mixed Sequential Read/Write (Power Efficiency)
Power Efficiency in MB/s/W Average Power in W

The power efficiency of the Intel SSD 660p during the mixed sequential I/O test is decent when operating entirely out of the SLC cache, and on par with most other low-end NVMe drives when the 660p is full.

When the test is run on a mostly-empty 660p the performance shows a very typical bathtub curve and no sign of the SLC cache running out. When the drive is full, performance decreases steadily as the proportion of writes increases.

Sequential Performance Power Management
POST A COMMENT

94 Comments

View All Comments

  • jjj - Tuesday, August 7, 2018 - link

    Not bad, at least for now when there are no QLC competitors.
    The pressure QLC will put on HDDs is gonna be interesting too.
    Reply
  • npz - Tuesday, August 7, 2018 - link

    Well at least the price is reflected in the performance, with the MX500 beating the 660p when both are full. As far as scenarios where you'd go from SLC to QLC I would be much more cautious about generalizing too much. A lot of people use SSDs as scratch drives for their work (DAW, video editing, recording, etc) and it seems more than likely to hit it in those usage scenarios Reply
  • StrangerGuy - Tuesday, August 7, 2018 - link

    "A lot of people use SSDs as scratch drives for their work (DAW, video editing, recording, etc)"

    A lot of people relative to the entire market? No.
    Is this drive intended for power users/professionals? No.
    Is QLC bringing a lot more GB/$ at MSRP prices for 90%+ of the market? Yes.
    Is the worst case performance even remotely applicable to its intended market? No
    So did you just say a dumb comment while disguised a concern troll? Yes.
    Reply
  • npz - Wednesday, August 8, 2018 - link

    A lot people who would bother purusing sites like Anandtech yes. The people who would run more comprehensive benchmarks, as opposed to just buying a cheap SSD is the lot of people in the alot of.. I refer to. Of course you just disregarded the rest of my statement acknowleding the fact that it's cheap didn't you? Just so you could go on with your smart ass here. Reply
  • npz - Wednesday, August 8, 2018 - link

    And I specifically refer to "worst case" because I argue it is NOT worst case, but it becomes a rather typical case for certain use--going out of SLC to QLC, which would NOT be seen by just quick benchmarks like a lot of people cite on Amazon reviews via Crystaldisk benchmarks. Reply
  • Valantar - Wednesday, August 8, 2018 - link

    a) If you're enough of a power user to need a scratch disk and use it heavily enough to fill its SLC cache, you really ought to be buying proper equipment and not low-end drives.
    b) if you're -"- you really ought to educate yourself about your needs, or employ someone with this knowledge
    c) If you're not -"-, stop worrying and enjoy the cheap SSDs.

    Tl;dr: workstation parts for workstation use; cheapo parts for basic use.
    Reply
  • damianrobertjones - Tuesday, August 7, 2018 - link

    These drives will fill the bottom end... allowing the mid and high tiers to increase in price. Usual. Reply
  • Valantar - Wednesday, August 8, 2018 - link

    Only if the performance difference is large enough to make them worth it - which it isn't, at least in this case. While the advent of TLC did push MLC prices up (mainly due to reduced production and sales volume), it seems unlikely for the same to happen here, as these drives aim for a market segment that has so far been largely unoccupied. (It's also worth mentioning here that silicon prices have been rising for quite a while, and also affects this.) There are a few TLC drives in the same segment, but those are also quite bad. This, on the other hand, competes with faster drives unless you fill it or the SLC cache. In other words, higher-end drives will have to either aim for customers with heavier workloads (which might imply higher prices, but would also mean optimizations for non-consumer usage scenarios) or push prices lower to compete. Reply
  • romrunning - Wednesday, August 8, 2018 - link

    Well, QLC will slowly push out TLC, which was already pushing out MLC. It's not just pushing the prices of MLC/TLC up, mfgs are slowing phasing those lines out entirely. So even if I want a specific type, I may not be able to purchase it in consumerspace (maybe enterprise, with the resultant price hit).

    I hate that we're getting lower-performing items for the cheaper price - I'd rather get higher-performing at cheaper prices! :)
    Reply
  • rpg1966 - Tuesday, August 7, 2018 - link

    "In the past year, the deployment of 64-layer 3D NAND flash has allowed almost all of the SSD industry to adopt three bit per cell TLC flash"

    What does this mean? n-layer NAND isn't a requirement for TLC is it?
    Reply

Log in

Don't have an account? Sign up now