The ThunderX2 SKUs: 16 to 32 Cores

The SKU inside our test system was the ThunderX2 CN9980 2.2. This is the top SKU that is available right now, offering 32 cores at 2.2 GHz, which are able to further boost to 2.5 GHz.

According to Cavium's plans, many more SKUs will be available in the coming months. Cavium claims that a CN9980 at 2.5 GHz will be available soon, which would be capable of boosting to 3 GHz.

Cavium has listed all of their planned SKUs together alongside the comparable Intel SKU. By Cavium's definition, a comparable Intel SKU is a chip that achieves the same SPECInRate (2017) under gcc as Cavium's SKU.

As you can see, Cavium considers our CN9880 2.2 to be comparable to the much more expensive 8164. For our testing we will compare it to the 8176, as that was the Intel SKU available to us. Not that it should matter much: the 8176 only has a 3% higher clockspeed and 2 additional cores (+7%) over the 8164. Note however that if Cavium's ThunderX2 can really compete with these Intel SKUs, they are offering the same performance at one third of the cost of the Intel SKUs.

Cavium's "New" Core: Vulcan Benchmark Configuration & Energy Consumption
POST A COMMENT

98 Comments

View All Comments

  • JohanAnandtech - Thursday, May 24, 2018 - link

    I have been trouble shooting a Java problem for the last 3 weeks now - for some reason our specific EPYC test system has some serious performance issues after we upgraded to kernel 4.13. This might be a hardware/firmware... issue. I don't know. I just know that the current tests are not accurate. Reply
  • npz - Thursday, May 24, 2018 - link

    Large Pages should be used whenever possible on Intel. You do waste some more memory, but it's worth it for most workloads as can be seen in your Intel Java benchmark. We've tested it for IO devices and enabling large pages in drivers to do DMA to shows a big difference for some high throughput devices. Reply
  • junky77 - Thursday, May 24, 2018 - link

    What? A 2.5GHZ ARM core is around 60-70% of a 3.8GHZ Skylake core?? For 3.8GHZ, the ARM is probably at least as fast? Reply
  • Wilco1 - Thursday, May 24, 2018 - link

    Probably around 90% since performance doesn't scale linearly with frequency. Note these are throughput parts so won't clock that high. However a 7nm version might well reach 3GHz. Reply
  • AJ_NEWMAN - Thursday, May 24, 2018 - link

    If Caviums tweaked 16nm hits 3GHz - it would to be unreasonable to aim for 4GHz for a 7nm part.

    With 2.3 times as many transistors available - it will be interesting to see what else they beef up?

    HIgher IPC? 64 cores? 16 memory controllers? CCIX - or perhaps they will compete with Fujitsu and add some Supercomputer centric hardware?

    AJ
    Reply
  • meta.x.gdb - Thursday, May 31, 2018 - link

    Wonder why the VASP code limped along on ThunderX2 while OpenFOAM saw such gains. I'm pretty familiar with both codes. VASP is mostly doing density functional theory, which is FFT-heavy... Reply
  • Meteor2 - Tuesday, June 26, 2018 - link

    All I want to say (all I can say) is that Anandtech has some of the best writers and commenters in this field. Fantastic article, and fantastic discussion. Reply
  • paldU - Saturday, July 07, 2018 - link

    A typo in Page 2. "it terms of performance per dollar" should be " in terms of performance per dollar". Reply

Log in

Don't have an account? Sign up now