AnandTech Storage Bench - The Destroyer

The Destroyer is an extremely long test replicating the access patterns of very IO-intensive desktop usage. A detailed breakdown can be found in this article. Like real-world usage, the drives do get the occasional break that allows for some background garbage collection and flushing caches, but those idle times are limited to 25ms so that it doesn't take all week to run the test. These AnandTech Storage Bench (ATSB) tests do not involve running the actual applications that generated the workloads, so the scores are relatively insensitive to changes in CPU performance and RAM from our new testbed, but the jump to a newer version of Windows and the newer storage drivers can have an impact.

We quantify performance on this test by reporting the drive's average data throughput, the average latency of the I/O operations, and the total energy used by the drive over the course of the test.

The Blue lines indicate the PM981, the OEM version of the 970 EVO.
The Orange lines are the 970 EVO.

ATSB - The Destroyer (Data Rate)

The average data rates from the Samsung 970 EVO on The Destroyer are a slight step backwards from the Samsung PM981 OEM drive and from the 960 EVO. All of the TLC-based drives are still performing below even Samsung's older MLC-based NVMe drives, and of course the Intel Optane SSD. This year's Western Digital WD Black offers about the same performance as the 970 EVO.

ATSB - The Destroyer (Average Latency)ATSB - The Destroyer (99th Percentile Latency)

Average and 99th percentile latencies for the 970 EVO are again very slightly worse than the PM981, but on these metrics the 960 EVO doesn't beat its replacement. The WD Black has notably better 99th percentile latency than the other flash-based SSDs.

ATSB - The Destroyer (Average Read Latency)ATSB - The Destroyer (Average Write Latency)

There is a clear range of average read latency scores that make up the high-end NVMe market segment. The 970 EVO doesn't stand out from the other drives in that category. For average write latency, scores vary a lot more, and the 970 EVO outperforms its predecessor slightly but fails to match the very good score the PM981 obtained.

ATSB - The Destroyer (99th Percentile Read Latency)ATSB - The Destroyer (99th Percentile Write Latency)

The 99th percentile read and write latency scores from the 970 EVO don't break new ground and mostly fail to match the PM981, though the differences aren't large enough to be a serious concern. The WD Black's notable QoS advantage is on the read side, where it is the only flash-based SSD to almost always keep read latency below 1ms.

ATSB - The Destroyer (Power)

We didn't have the opportunity to measure power usage of the Samsung PM981 on The Destroyer, so this is our first look at the power draw of the Samsung Phoenix controller on this test. The situation isn't good. The 970 EVO uses twice the energy as the WD Black to does despite both drives offering about the same level of performance on The Destroyer. The power efficiency of the 970 EVO seems to be a big step backwards from the previous generation and is not at all competitive.

Introduction AnandTech Storage Bench - Heavy


View All Comments

  • jkresh - Tuesday, April 24, 2018 - link

    is a review of the HP EX920 coming? Reply
  • Billy Tallis - Tuesday, April 24, 2018 - link

    Yep, I have a sample of that on hand. I haven't tested it yet so it'll be a few weeks while I run it and several other drives through the post-Meltdown/Spectre patched testbed. Reply
  • Luckz - Tuesday, April 24, 2018 - link

    You write that you use Windows drivers instead of manufacturer ones, but elsewhere I hear complaints that the PM981 isn't a very useful buy because it requires drivers that aren't even available to the public, only to OEMs. Wouldn't it make sense to also try these with Samsung drivers especially if they're being compared to the PM981 all the time? Reply
  • Billy Tallis - Tuesday, April 24, 2018 - link

    The PM981 doesn't require any special drivers. It's just another standard NVMe SSD. Reply
  • HStewart - Tuesday, April 24, 2018 - link

    I am curious what kind of performance would I see replacing the Hyrix 512G in my Dell XPS 15 2in1 with a 1G or possible 2G in a year. Reply
  • Drazick - Tuesday, April 24, 2018 - link

    Why do we need M.2 in desktop computer?
    Why should we live with this thermal compromise?

    We want SATA Express / U2 drives.
  • Cooe - Tuesday, April 24, 2018 - link

    Yuck and yuck. SATA Express is 1/2 the speed, and a completely stillborn interface, and the cable dependant huge waste of space 2.5" U2 makes next to no sense outside the data center. The M.2 form factor has countless innate
    advantages over both those and any of it's potential thermal issues are easy & cheap to solve if you're particular setup happens to be vulnerable to their occurrence.

    Not only have Samsung's copper heatsink labels reduced the problem significantly w/o any user action, but most good current motherboards have included M.2 heatsinks and even for those that don't, they can be purchased online for ridiculously cheap.

    Now find me something braindead simple to install & use for just a couple $ that can make SATA Express twice as fast and actually used in drives, or make U.2 cableless and a fraction of a standard 2.5" drive's size. There isn't any.
  • medoogalaxy - Wednesday, April 25, 2018 - link

    superpower ssd Reply
  • shatteredx - Wednesday, April 25, 2018 - link

    Which is more important for “snappiness,” 4K random qd1 read or write? Reply
  • sjprg2 - Wednesday, April 25, 2018 - link

    Just because I hate the sata cables I now have all M.2 Samsungs installed either in the M.2 slots or on the PCIE plugin adapters. This also allows all of the trays to be removed from the chassis letting the front panel fans blow straight onto the motherboard and plugins. Reply

Log in

Don't have an account? Sign up now