System Performance

Not all motherboards are created equal. On the face of it, they should all perform the same and differ only in the functionality they provide - however, this is not the case. The obvious pointers are power consumption, but also the ability for the manufacturer to optimize USB speed, audio quality (based on audio codec), POST time and latency. This can come down to manufacturing process and prowess, so these are tested.

Power Consumption

Power consumption was tested on the system while in a single GPU configuration with a wall meter connected to the Corsair HX 750 power supply. This power supply is Platinum rated. As I am in the US on a 120 V supply, leads to ~87% efficiency > 75W, and 92%+ efficiency at 375W, suitable for both idle and multi-GPU loading. This method of power reading allows us to compare the power management of the UEFI and the board to supply components with power under load, and includes typical PSU losses due to efficiency. These are the real world values that consumers may expect from a typical system (minus the monitor) using this motherboard.

While this method for power measurement may not be ideal, and you feel these numbers are not representative due to the high wattage power supply being used (we use the same PSU to remain consistent over a series of reviews, and the fact that some boards on our test bed get tested with three or four high powered GPUs), the important point to take away is the relationship between the numbers. These boards are all under the same conditions, and thus the differences between them should be easy to spot.

Power: Long Idle (w/ GTX 980)

Power: OS Idle (w/ GTX 980)

Power: Prime95 Blend (w/ GTX 980)

The Power Consumption tests show the Gigabyte H370N WIFI looking pretty good overall. In the idle tests, it is right up there with the best of them at 39W long Idle and 41W OS idle. Load wattage was the lowest of all boards tested so far at 119W. I haven't been able to pin down an obvious reason as the clock speeds are all the same. It is a much smaller board with fewer LEDs and controllers so that likely has something to do with it.  

Non-UEFI POST Time

Different motherboards have different POST sequences before an operating system is initialized. A lot of this is dependent on the board itself, and POST boot time is determined by the controllers on board (and the sequence of how those extras are organized). As part of our testing, we look at the POST Boot Time using a stopwatch. This is the time from pressing the ON button on the computer to when Windows 10 starts loading. (We discount Windows loading as it is highly variable given Windows specific features.

Non UEFI POST Time

POST times for the H370N WIFI are the fastest tested so far at 19.8s default and 18.3s stripped. I confirmed any fast boot options were disabled in the optimized default setting we run (it was) to make sure. I had to test this board on another monitor as the knock-off Yamakasi I use for testing (M280PU) wouldn't keep the initial signal for whatever reason. It would show it has a signal, then not... by the time it got a signal again, it was sitting in Windows. Hooking this up to the Acer Predator I have allowed me to see the POST process and determine accurately when it hands off to the system. 

DPC Latency

Deferred Procedure Call latency is a way in which Windows handles interrupt servicing. In order to wait for a processor to acknowledge the request, the system will queue all interrupt requests by priority. Critical interrupts will be handled as soon as possible, whereas lesser priority requests such as audio will be further down the line. If the audio device requires data, it will have to wait until the request is processed before the buffer is filled.

If the device drivers of higher priority components in a system are poorly implemented, this can cause delays in request scheduling and process time. This can lead to an empty audio buffer and characteristic audible pauses, pops and clicks. The DPC latency checker measures how much time is taken processing DPCs from driver invocation. The lower the value will result in better audio transfer at smaller buffer sizes. Results are measured in microseconds. 

Deferred Procedure Call Latency

Our DPC latency results for the H370N WIFI reached 294µs placing it in the middle of some varying results. The rule of thumb here is anything under 300µs should allow for smooth audio so it sneaks in under that value. 

Benchmark Overview CPU Performance: Short Form
Comments Locked

23 Comments

View All Comments

  • TallBill - Sunday, June 24, 2018 - link

    What do you think about the term Nazi being thrown around as if it means nothing?
  • E1m1 - Monday, June 25, 2018 - link

    Does it support hdcp 2.2 on hdmi 2.0?

    And which itx bosrds supports hdcp2.2?.
  • CheapSushi - Monday, June 25, 2018 - link

    I really wish more boards put M.2 slots underneath the board! It's fanatastic IMO. Even ATX should do it. We have all these HEDT CPU available now with lots of PCIe lanes, even chipsets with even more lanes, and ATX and EATX don't even get full 7 x16 slots usually. I wish we could maximize the board even further. Full 7 x16 slots with M.2 slots on the back would just be so perfect for maybe 1 or two top end boards. Along with more SFF-8643 ports!

Log in

Don't have an account? Sign up now