AnandTech Storage Bench - Light

Our Light storage test has relatively more sequential accesses and lower queue depths than The Destroyer or the Heavy test, and it's by far the shortest test overall. It's based largely on applications that aren't highly dependent on storage performance, so this is a test more of application launch times and file load times. This test can be seen as the sum of all the little delays in daily usage, but with the idle times trimmed to 25ms it takes less than half an hour to run. Details of the Light test can be found here. As with the ATSB Heavy test, this test is run with the drive both freshly erased and empty, and after filling the drive with sequential writes.

ATSB - Light (Data Rate)

The Light test allows the flash-based SSDs to make the most of their write caching throughout the test, so even the 900p is surpassed by the Samsung NVMe SSDs while the 800p ranks with the budget NVMe drives. When the drives are full and the flash-based SSDs get bogged down with garbage collection, the 900p comes out ahead but the 800p still trails behind the Samsung 960 PRO. The VROC configuration look especially poor in terms of average data rate, and the RAID-5 performance is surprisingly low.

ATSB - Light (Average Latency)ATSB - Light (99th Percentile Latency)

The Optane SSD 800p scores in the middle tier of SSDs for average latency on the Light test, and VROC RAID is no help here. VROC does help with the 99th percentile latencies, but without it the 800p looks like a low-end drive that merely doesn't have garbage collection problems.

ATSB - Light (Average Read Latency)ATSB - Light (Average Write Latency)

The average read latencies from the 800p are almost twice as high as those from the 900p, and VROC's overhead only makes it worse. The average write latencies of the 900p aren't as good as the best flash-based SSDs, and the write latency of the 800p is well over twice that of the 900p.

ATSB - Light (99th Percentile Read Latency)ATSB - Light (99th Percentile Write Latency)

The 99th percentile latency scores from the 800p are not great, but at least the drives perform just as well when full. Small flash-based drives are the most heavily affected when constant garbage collection becomes necessary.

ATSB - Light (Power)

The Light test is a fairly short run with any of these drives, but the 800p still manages to return extremely good power usage numbers that are well ahead of any flash-based NVMe SSD.

AnandTech Storage Bench - Heavy Random Performance
POST A COMMENT

116 Comments

View All Comments

  • boeush - Thursday, March 8, 2018 - link

    P.S. please pardon the "autocorrect"-induced typos... (in the year 2018, still wishing Anandtech would find a way to let us edit our posts...) Reply
  • Calin - Friday, March 9, 2018 - link

    Unfortunately, if you already have a computer supporting only 32 GB of RAM, the 200$ for an Intel 800p is peanuts compared to what you would have to pay for a system that supports more than 128GB of RAM - both in costs of mainboard, CPU and especially RAM. I'd venture a guess of a $5,000 entry price (you might pay less for refurbished). It might very possibly be worth it, but it's still a $5k against a $200 investment Reply
  • The_Assimilator - Friday, March 9, 2018 - link

    Entry-level Intel Xeon + 1U motherboard with 8x DIMM slots = ~$600
    8x 32GB modules for 256GB RAM total = ~$3,200

    So not quite $5k, but still a lot more than $200 :)
    Reply
  • mkaibear - Friday, March 9, 2018 - link

    ...plus a new case, plus a new PSU, plus a UPS... Reply
  • boeush - Saturday, March 10, 2018 - link

    Yes, I did mention a lot of $$$...

    But that's the point: how badly do you really need the extreme random access performance to begin with - above and beyond what a good 1 TB SSD can deliver? Will you even be able to detect the difference? Most workloads are not of such a 'pure' synthetic-like nature, and any decent self-respecting OS will anyway cache your 'hot' files in RAM automatically for you (assuming you have sufficient RAM).

    So really, to benefit from such Optane drives (at a cost 4x the equivalent-sized NAND SSD) you'd need to have a very exotic corner-case of a workload - and if you're really into such super-exotic special cases, then likely for you performance trumps cost (and you aren't going to worry so much about +/- a few $thousand here or there...)
    Reply
  • jjj - Friday, March 9, 2018 - link

    Yeah not impressive at all. They can't reach mainstream price points with higher capacity and that leads to less than stellar perf and a very limiting capacity.
    To some extent, the conversation should also include investing more in DRAM when building a system but that's hard to quantify.
    Intel/Micron need the second gen and decent yields, would be nice if that arrives next year- just saying, it's not like they are providing much info on their plans. Gen 2 was initially scheduled for early 2017 but nobody is talking about roadmaps anymore.
    Reply
  • jjj - Friday, March 9, 2018 - link

    Just to add something, NAND prices are coming down some and perf per $ is getting better as more folks join the higher perf party. It's not gonna be trivial to compete with NAND in consumer. Reply
  • CheapSushi - Friday, March 9, 2018 - link

    Hardware "enthusiasts" have sure become jaded, cynical, grumpy assholes. Reply
  • Reflex - Friday, March 9, 2018 - link

    No shit. I think people are confusing their anger at Intel with whether or not this is a good tech advancement. I am wondering if they even are looking at the article I saw. The vast majority of the charts showed Optane products in the lead, power consumption lower, latency lower, etc. Only a few places showed it behind, most around scenarios that are not typical.

    It is fair to point out its not worth 3x the cost. I'm building a system now, not going with Optane at this price. It is fair to point out that the capacity is not there yet. That is another part of why I'm not using it. Those are valid criticisms. They are also things that are likely to be remedied very soon.

    What is not fair is to bash it incessantly for reasons imagined in their own minds (OMG IT DOES NOT HIT THE NUMBERS IN A PAPER ABOUT THE POTENTIAL IN ITS FIRST GEN PRODUCTS!), or ignore the fact that we finally have a potentially great storage alternative to NAND which has a number of limitations we have run up against. This is a great thing.
    Reply
  • Adramtech - Saturday, March 10, 2018 - link

    Agreed, Reflex. In 2 years Optane Gen 2 is likely going to look a lot better and impress. Criticizing Gen 1 tech is ridiculous. Reply

Log in

Don't have an account? Sign up now