Sequential Read Performance

Our first test of sequential read performance uses short bursts of 128MB, issued as 128kB operations with no queuing. The test averages performance across eight bursts for a total of 1GB of data transferred from a drive containing 16GB of data. Between each burst the drive is given enough idle time to keep the overall duty cycle at 20%.

Burst 128kB Sequential Read (Queue Depth 1)

The QD1 burst sequential read performance of the Intel Optane SSD 800p is close to their rated maximum throughput, but they are far behind the 900p and high-end Samsung drives that actually need more than two PCIe lanes.

Our test of sustained sequential reads uses queue depths from 1 to 32, with the performance and power scores computed as the average of QD1, QD2 and QD4. Each queue depth is tested for up to one minute or 32GB transferred, from a drive containing 64GB of data.

Sustained 128kB Sequential Read

On the longer sequential read test, the Samsung NVMe SSDs fall down to the level of the Optane SSD 800p, because the flash-based SSDs are slowed down by some of the data fragmentation left over from the random write test. The Optane SSDs performed those writes as in-place modifications and thus didn't incur any fragmentation. This leaves the Samsung 960 PRO 2TB barely faster than the 800p, while the 900p runs away with its lead.

Sustained 128kB Sequential Read (Power Efficiency)

The Optane SSD 800p has the clear lead in power efficiency, as its second-tier performance comes with far lower power consumption than the top-performing 900p.

There are no big surprises with the queue depth scaling; the 800p's sequential reads are slightly faster at QD2 than QD1, but there's no further improvement beyond that. The 800p is easily staying within its 3.75 W rated maximum power draw.

Sequential Write Performance

Our test of sequential write burst performance is structured identically to the sequential read burst performance test save for the direction of the data transfer. Each burst writes 128MB as 128kB operations issued at QD1, for a total of 1GB of data written to a drive containing 16GB of data.

Burst 128kB Sequential Write (Queue Depth 1)

The burst sequential write speed of the Intel Optane SSD 800p is no better than the low-end flash-based NVMe SSDs. Without any write caching mechanism in the controller, the fundamental nature of 3D XPoint write speeds shows through. The 900p overcomes this by using a 7-channel controller, but that design doesn't fit within the M.2 form factor.

Our test of sustained sequential writes is structured identically to our sustained sequential read test, save for the direction of the data transfers. Queue depths range from 1 to 32 and each queue depth is tested for up to one minute or 32GB, followed by up to one minute of idle time for the drive to cool off and perform garbage collection. The test is confined to a 64GB span of the drive.

Sustained 128kB Sequential Write

The Optane SSD 800p looks better on the sustained sequential write test, as all the TLC-based SSDs run out of SLC cache and slow down dramatically, while the Optane SSDs keep delivering the exact same performance.

Sustained 128kB Sequential Write (Power Efficiency)

Despite their very different sequential write throughput, the Optane SSD 900p and 800p end up with very similar power efficiency on this test. The Samsung NVMe drives are even more efficient, but only the premium MLC-based 960 PRO has a large lead.

Almost all of the drives show no performance scaling with increasing queue depth, as large-block sequential writes can keep all the memory channels busy with only a little bit of buffering. The 900p needs at least two 128kB writes in flight to reach full throughput.

Random Performance Mixed Read/Write Performance
Comments Locked

116 Comments

View All Comments

  • name99 - Friday, March 9, 2018 - link

    Not QUITE true.
    Apple has done it (IMHO very successfully) in part because
    - they understand something of the data patterns and
    - already had tech in the file system to move hot data (hot file system data AND hot files) to the fastest part of the medium and
    - they were willing to include ENOUGH flash (128GB) and fast flash; they didn't cheap out.

    But yeah, the solutions sold by Seagate were not (in my experience) very impressive, especially considering the ridiculous premium Seagate charged for them.

    What you CAN do on Apple systems (and I have done, very successfully, multiple times) is to fuse external SSDs with other drives (either other external or an internal HD) and this behaves just like a native fusion drive, you can even boot off it. This means you can retrofit fusion even to old macs (eg I have a 2007 iMac running a fusion system based on an SSD in an external FW-800 enclosure, fused with the internal 320GB drive).
  • zepi - Friday, March 9, 2018 - link

    Sounds like Apple Fusion drive. Very difficult to do well on drive-level, much easier to do well with some OS support and filesystem level.

    Afaik people have been relatively happy with their Fusion drives, though personally I find them horribly expensive. Then again, that applies to all Apple storage options, they always feel insanely expensive.
  • PeachNCream - Friday, March 9, 2018 - link

    Optane performance is good in some ways and disappointing in others. I'd like to see the technology improve since NAND endurance is a problem that warrants a solution. Maybe Optane isn't that solution.
  • Reflex - Friday, March 9, 2018 - link

    Optane basically is a variation of Phase-Change Memory. It's been around a long time, but Micron/Intel have finally managed to make it in large enough capacities to productize it out of niche markets. There are other contenders for next gen memory &storage, ranging from MRAM (magnetic memory) to ReRAM to racetrack memory (HP has claimed to be on the edge of productizing that for about four years now).

    I am just happy one finally got out there, an it is in pretty good shape for a first gen product. Hoping this gets others to get serious about bringing alternative storage methods to market soon.
  • Lolimaster - Saturday, March 10, 2018 - link

    At least the 860 EVO and Pro improved endurance a lot for consumer.

    600TB 860 EVO 1TB
    1.2PB 860 Pro 1TB
  • leexgx - Sunday, March 11, 2018 - link

    they can easy do 4x that especially the Pro drive (they was been Really conservative before, mainly so it did not affect the sales of there enterprise drives)

    heck the 840 Pro did was 2PB before it died suddenly (but it did all that with 0 read errors)
  • Araemo - Friday, March 9, 2018 - link

    Can we get the consistency scatter plots for this drive? Those are an awesome tool to gauge the real world 'feel' of the drive.
  • Billy Tallis - Friday, March 9, 2018 - link

    They're an awesome tool to exaggerate the impact of garbage collection pauses on flash-based SSDs. Real-world usage doesn't involve constant writes to a full drive. Those random write consistency graphs often show interesting things about how drives handle GC, but they're a horrible way of ranking real-world performance of SSDs.
  • Zinabas - Saturday, March 10, 2018 - link

    As a thought the best case to use these in... would be an AMD Ryzen system with (Fuzedrive) the new software that manages all the drives as one volume. The small capacity would be automanaged by software and would be swapped to fit whatever you're playing at the time.
  • emvonline - Monday, March 12, 2018 - link

    so there doesnt seen to be a clear difference in real world applications. its faster with lower latency but does not always show up. could you cleary pick the optane drive vs samsung 960 in a blind test everytime running games and office apps?

Log in

Don't have an account? Sign up now