Mixed Random Performance

Our test of mixed random reads and writes covers mixes varying from pure reads to pure writes at 10% increments. Each mix is tested for up to 1 minute or 32GB of data transferred. The test is conducted with a queue depth of 4, and is limited to a 64GB span of the drive. In between each mix, the drive is given idle time of up to one minute so that the overall duty cycle is 50%.

Mixed 4kB Random Read/Write

The mixed random I/O performance of the Intel Optane SSD 900P is completely unmatched. The small Optane Memory M.2 is the second fastest drive we've tested, and the fastest flash-based SSD is only a third as fast as the Optane SSD overall.

At the very end of the test, when the workload shifts to pure random writes, Samsung's fastest SSDs are able to batch the writes and dramatically improve throughput, almost enough to catch up to the slowest speed the Optane SSD hits during this test.

Mixed Sequential Performance

Our test of mixed sequential reads and writes differs from the mixed random I/O test by performing 128kB sequential accesses rather than 4kB accesses at random locations, and the sequential test is conducted at queue depth 1. The range of mixes tested is the same, and the timing and limits on data transfers are also the same as above.

Mixed 128kB Sequential Read/Write

The Intel Optane SSD 900P doesn't quite dominate the mixed sequential I/O test to the extent that it trounced the competition in the mixed random I/O test, but it still breaks the record with a 40% higher average throughput than the fastest flash-based SSD.

The Optane SSD 900P's performance wavers a bit as the workload changes, but the general trend is a gradual reduction in performance as the proportion of writes increases. The flash-based SSDs tend to show an sharper decline in performance during the first half of the test, and the good ones recover most of that performance over the course of the second half. But the low performance in the middle of the test brings the averages way down and leaves the Optane SSD alone at the top.

Sequential Performance BAPCo SYSmark 2014 SE
Comments Locked

205 Comments

View All Comments

  • ddriver - Friday, October 27, 2017 - link

    "MLC/TLC NAND treated like SLC"

    That sounds like "a snail treated as a cheetah". I bet feeding antelopes to a snail will make it as fast as a cheetah.

    There is already a huge gap in access performance between MLC and TLC. TLC drives turn pathetic the moment they run out of cache. It is physically impossible to store multiple bits and access as if it is a single bit. Neither in terms of performance, nor in terms of endurance.

    We haven't even seen what SLC is truly capable of, only the very early SSDs had SLC, and back then they were crippled by the primitive and tremendously under-powered controllers. At the medium level, SLC is insanely fast.
  • MFinn3333 - Friday, October 27, 2017 - link

    OK, no that is simply not true.

    Fujtisu made a drive in 2014 entirely of Intel 25nm SLC and a Sandforce 2281 controller. It was called Fujitsu FSX 240GB (And 120GB). It kicked ass for it's class and time but it is nowhere and I mean nowhere near the speeds that are here or what you are claiming.

    I set a couple of them up in RAIeD-0 through both hardware and software RAID and while it did often saturat the bandwidth but only with sequential transfers. The only number that it could ever come close to matching anything here is when you are talking random writes. I could easily hit 220MB/s at 4K Random Write but it's Random Read speed was around 50MB/s at the best of times.

    SLC was and is awesome and I feel comfortable with doing horrible things to those drives (I defragged them for no reason, compiled code, did multiple virtual machines including Windows 3.11, and more benchmarking than any person ever should) but it's time is over.

    Get over it.
  • ddriver - Friday, October 27, 2017 - link

    Oh wow, you are some kind of a tech genius, expecting raid to boost something other than sequential access.

    2014 is ancient history in the world of SSD controllers. SLC on the physical level is capable of 500-600 times better performance than what the "best" SLC controller could squeeze out of it.

    I am not saying this isn't the case for xpoint as well, I am just saying SLC is far more capable than what people can imagine.
  • MFinn3333 - Friday, October 27, 2017 - link

    "We haven't even seen what SLC is truly capable of, only the very early SSDs had SLC, and back then they were crippled by the primitive and tremendously under-powered controllers. "

    That is what you wrote, not about SSD's a few years ago but the very early ones. You moved your own goalposts.

    SLC is about 4x faster than MLC. You are claiming it to be 500x while showing little to no evidence and roasting Intel for their claims. So either put up or shut up with your evidence.
  • Reflex - Friday, October 27, 2017 - link

    SLC does not obey physics. Gotta take that into account. ;)
  • chrnochime - Wednesday, November 1, 2017 - link

    No comment when the other guy mentions 2014 is not "very early SSD"? Come on now. Your prejudice against anything other than SLC is showing. We all know early SSDs go back much earlier than even 2007.
  • edzieba - Saturday, October 28, 2017 - link

    If SLC were truly better and cheaper than PCM, then companies would be using it and undercutting the competition with their cheaper, faster drives with lower production costs.
  • jospoortvliet - Friday, November 3, 2017 - link

    Indeed: https://xkcd.com/808/
  • extide - Friday, October 27, 2017 - link

    Regardless of the tests used here this thing is one of the fastest storage devices available PERIOD, and it's honestly priced pretty well. It's cheaper/GB than the first SSD I bought, in fact. I could see this being used for large swaps on servers that need a huge memory footprint for a lot cheaper than a shitload of RAM, or as a ZFS L2ARC or ZIL, or for hosting a ton of VM's or for running databases off of, etc.

    BUT you are ddriver, the king of cynicism, so I can at least say "I got what I expected."
  • ddriver - Friday, October 27, 2017 - link

    I am also the king of "1000 times better means 1000 times better" ;)

    I too got what I expected, because I expected that "1000 times better" to be a lie.

    If you look at my comments, I am actually 100% objective about acknowledging the benefits of hypetane. Which is where my true biggest fault lies. How dare I be objective rather than expressing nothing short of complete awe and admiration?

Log in

Don't have an account? Sign up now