Explaining the Jump to Using HCC Silicon

When Intel makes its enterprise processors, it has historically produced three silicon designs:

  • LCC: Low Core Count
  • HCC: High Core Count (sometimes called MCC)
  • XCC: Extreme Core Count (sometimes called HCC, to confuse)

The idea is that moving from LCC to XCC, the silicon will contain more cores (sometimes more features), and it becomes cost effective to have three different designs rather than one big one and disable parts to meet the range. The size of the LCC silicon is significantly smaller than the XCC silicon, allowing Intel to extract a better production cost per silicon die.

Skylake-SP Die Sizes (from chip-architect.com)
  Arrangement Dimensions
(mm)
Die Area
(mm2)
LCC 3x4 (10-core) 14.3 x 22.4 322 mm2
HCC 4x5 (18-core) 21.6 x 22.4 484 mm2
XCC 5x6 (28-core) 21.6 x 32.3 698 mm2

In the enterprise space, Intel has each of the three designs throughout its Xeon processor stack, ranging from four-core parts (usually cut down versions of the LCC silicon) all the way up to 28 core parts (using XCC) for this generation. The enterprise platform has more memory channels, support for error correcting and high-density memory, the ability to communicate to multiple processors, and several other RAS (reliability, accessibility, serviceability) features that are prominent for these markets. These are typically disabled for the prosumer platform.

In the past, Intel has only translated the LCC silicon into the prosumer platform. This was driven for a number of reasons.

  • Cost: if users needed XCC, they had to pay the extra and Intel would not lose high-end sales.
  • Software: Enterprise software is highly optimized for the core count, and systems are built especially for the customer. Prosumer software has to work on all platforms, and is typically not so multi-threaded.
  • Performance: Large, multi-core silicon often runs at a low frequency to compensate. This can be suitable for an enterprise environment, but a prosumer environment requires responsiveness and users expect a good interactive experience.
  • Platform Integration: Some large silicon might have additional design rules above and beyond the smaller silicon support, typically with power or features. In order to support this, a prosumer platform would require additional engineering/cost or lose flexibility.

So what changed at Intel in order to bring HCC silicon to the HEDT prosumer platform?

The short and shrift answer that many point to is AMD. This year AMD launched its own high-end desktop platform, based on its Ryzen Threadripper processors. With their new high performance core, putting up to 16 of them in a processor for $999 was somewhat unexpected, especially with the processor beating Intel’s top prosumer processors in some (not all) of the key industry benchmarks. The cynical might suggest that Intel had to move to the HCC strategy in order to stay at the top, even if their best processor will cost twice that of AMD.

Of course, transitioning a processor from the enterprise stack to the prosumer platform is not an overnight process, and many analysts have noted that it is likely that Intel has considered this option for several generations: testing it internally at least and looking at the market to decide when (or if) it is a good time to do so. The same analysts point to Intel’s initial lack of specifications aside from core count when these processors were first announced several months ago: specifications that would have historically been narrowed down at that point in previous designs if they were in the original plans. It is likely that the feasibly of introducing the HCC silicon was already in process, but actually moving that silicon to retail was a late addition to counter a threat to Intel’s top spot. That being said, to say Intel had never considered it would perhaps be a jump too far.

The question now becomes if the four areas listed above would all be suitable for prosumers and HEDT users:

  • Cost: Moving the 18-core part into the $1999 is unprecedented for a consumer processor, so it will be interesting to see what the uptake will be. This does cut into Intel’s professional product line, where the equivalent processor is nearer $3500, but there are enough ‘cuts’ on the prosumer part for Intel to justify the difference: memory channels (4 vs 6), multi-processor support (1 vs 4), and ECC/RDIMM support (no vs yes). What the consumer platform does get in kind is overclocking support, which the enterprise platform does not.
  • Software: Intel introduced its concept of ‘mega-tasking’ with the last generation HEDT platform, designed to encompass users and prosumers that use multiple software packages at once: encoding, streaming, content creation, emulation etc. Its argument now is that even if software cannot fully scale beyond a few cores, a user can either run multiple instances or several different software packages simultaneously without any slow-down. So the solution to this is rather a redefinition of the problem rather than anything else, which could have applied previously as well.
  • Performance: Unlike enterprise processors, Intel is pushing the frequency on the new HCC parts for consumers. This translates into a slightly lower base frequency but a much higher turbo frequency, along with support for Turbo Max. In essence, software that requires responsiveness can still take advantage of the high frequency turbo modes, as long as the software is running solo. The disadvantage is going to be in power consumption, which is a topic later in the review.
  • Platform Integration: Intel ‘solved’ this by creating one consumer platform suitable for nine processors with three different designs (Kaby Lake-X, Skylake-X LCC and Skylake-X HCC). Both the Kaby Lake-X and Skylake-X parts have different power delivery methods, support different numbers of memory channels, and different numbers of PCIe lanes / IO. When this was first announced, there was substantial commentary that this was making the platform overly complex, and would lead to confusion (it lead to at least one broken processor in our testing).

Each of these areas has either been marked as solved, or redefined out of being issue (even if a user agrees with the redefinition or not). 

New Features in Skylake-X: Cache, Mesh, and AVX-512 Opinion: Why Counting ‘Platform’ PCIe Lanes (and using it in Marketing) Is Absurd
Comments Locked

152 Comments

View All Comments

  • tamalero - Wednesday, September 27, 2017 - link

    Hey guys, question.. Toms and others have mentioned that they HAD to put watercooling to keep this thing stable.
    Did the same happened to your sample? Wouldnt that increase the "cost of ownership" even more than the intel counterpart?

    I mean, the mobo, the ram, the watercooling kit and then the hefty processor?
  • samer1970 - Wednesday, September 27, 2017 - link

    Water cooling is for overclocking only ... you will be okay using 170 watt TDP rated air cooler if you dont oc.
  • 0ldman79 - Wednesday, September 27, 2017 - link

    I'm going to grab another cup-o-coffee and read it again, but the performance per dollar, AMD costs about half as much as Intel for several comparable models, how does Intel have better performance per dollar on so many of those graphs?

    Admittedly my kids are driving me nuts and I've been reading this for two days now trying to finish...
  • silvertooth82 - Thursday, September 28, 2017 - link

    if this is all true... let's say thanks to AMD for poking Intel
  • AnnonymousCoward - Friday, September 29, 2017 - link

    Very nice review. So compared to a 6700K/7700K, the 18-core beast is marginally slower in single-thread, and only 2-3x faster in multi-thread.

    I found the time difference when opening the big PDF to be the most interesting chart. 65W Ryzens take a noticable extra second.

    Exceeding the published TDP sounds like lawsuit territory.
  • nufear - Monday, October 2, 2017 - link

    Price for Intel Core i9-7980XE and Core i9-7960X
    My opinion, I can not justify to spend extra $700~1k on these processors. The performances weren't that significant.
  • rwnrwnn7 - Wednesday, October 4, 2017 - link

    AVX-512 - What software work with him?
    for what it used today?
  • rwnrwnn7 - Wednesday, October 4, 2017 - link

    AVX-512 - What software work with him?
    for what it used today?
  • DoDidDont - Friday, October 27, 2017 - link

    Would have been nice to see the Xeon Gold 6154 in the test. 18 cores / 36 threads and apparently an all core turbo of 3.7Ghz, plus the advantage of adding a second one on a dual socket Mobo.

    Planning a pair of 6154's on either an Asus WS C621E or a Supermicro X11DPG-QT and Quad GPU set up.

    My 5 year old dual E5-2687w system scores 2298 in Cinebench R15, which has served me well and paid for itself countless times over, but having dual 6154's will bring a huge smile to the face for V-ray production rendering.

    My alternative is to build two systems on the i9-7980XE, one for content creation, single CPU, single GPU, and the other as a GPU workhorse for V-ray RT, and Iray, single CPU, Quad GPU+ to call on when needed.

    So the comparison would have been nice for the various tests performed.
  • sharath.naik - Sunday, December 3, 2017 - link

    Isn't there supposed to be part 2!!!

Log in

Don't have an account? Sign up now