CPU Office Tests

The office programs we use for benchmarking aren't specific programs per-se, but industry standard tests that hold weight with professionals. The goal of these tests is to use an array of software and techniques that a typical office user might encounter, such as video conferencing, document editing, architectural modeling, and so on and so forth.

All of our benchmark results can also be found in our benchmark engine, Bench.

Chromium Compile (v56)

Our new compilation test uses Windows 10 Pro, VS Community 2015.3 with the Win10 SDK to compile a nightly build of Chromium. We've fixed the test for a build in late March 2017, and we run a fresh full compile in our test. Compilation is the typical example given of a variable threaded workload - some of the compile and linking is linear, whereas other parts are multithreaded.

Office: Chromium Compile (v56)

One of the interesting data points in our test is the Compile, and it is surprising to see the 1920X only just beat the Ryzen 7 chips. Because this test requires a lot of cross-core communication, the fewer cores per CCX there are, the worse the result. This is why the 1950X in SMT-off mode beats the 3 cores-per-CCX 1920X, along with lower latency memory support. We know that this test is not too keen on victim caches either, but it does seem that the 2MB per core ratio does well for the 1950X, and could explain the performance difference moving from 8 to 12 to 16 cores under the Zen microarchitecture.

PCMark8: link

Despite originally coming out in 2008/2009, Futuremark has maintained PCMark8 to remain relevant in 2017. On the scale of complicated tasks, PCMark focuses more on the low-to-mid range of professional workloads, making it a good indicator for what people consider 'office' work. We run the benchmark from the commandline in 'conventional' mode, meaning C++ over OpenCL, to remove the graphics card from the equation and focus purely on the CPU. PCMark8 offers Home, Work and Creative workloads, with some software tests shared and others unique to each benchmark set.

Office: PCMark8 Home (non-OpenCL)

Office: PCMark8 Work (non-OpenCL)

Strangely, PCMark 8's Creative test seems to be failing across the board. We're trying to narrow down the issue.

SYSmark 2014 SE: link

SYSmark is developed by Bapco, a consortium of industry CPU companies. The goal of SYSmark is to take stripped down versions of popular software, such as Photoshop and Onenote, and measure how long it takes to process certain tasks within that software. The end result is a score for each of the three segments (Office, Media, Data) as well as an overall score. Here a reference system (Core i3-6100, 4GB DDR3, 256GB SSD, Integrated HD 530 graphics) is used to provide a baseline score of 1000 in each test.

A note on context for these numbers. AMD left Bapco in the last two years, due to differences of opinion on how the benchmarking suites were chosen and AMD believed the tests are angled towards Intel processors and had optimizations to show bigger differences than what AMD felt was present. The following benchmarks are provided as data, but the conflict of opinion between the two companies on the validity of the benchmark is provided as context for the following numbers.

Office: SYSMark 2014 SE (Overall)

Benchmarking Performance: CPU Encoding Tests Benchmarking Performance: CPU Legacy Tests
POST A COMMENT

349 Comments

View All Comments

  • ddriver - Thursday, August 10, 2017 - link

    Yeah if all you do all day is compile chromium with visual studio... Take that result with a big spoon of salt. Reply
  • Samus - Thursday, August 10, 2017 - link

    This thing can also decompress my HD pr0n RARs in record time! Reply
  • carewolf - Thursday, August 10, 2017 - link

    The jokes is on you. More cores and more memory bandwidth is always faster for compiling. Anandtech must have butched the benchmark here. Other sites show ThreadRipper whipping i9 ass as expected. Reply
  • bongey - Thursday, August 10, 2017 - link

    They did without a doubt screw up the compile test. The 6950x is a 10 core /20 thread intel cpu, but somehow the 7900x has 20% improvement, when no other test even comes close to that much of an improvement. The 7900x is basically just bump in clock speed for a 6950x. Reply
  • Ian Cutress - Thursday, August 10, 2017 - link

    'The 7900X is basically just bump in clock speed for a 6950X'

    L2 cache up to 1MB, L3 cache is a victim cache, mesh interconnect rather than rings.
    Reply
  • mlambert890 - Saturday, August 12, 2017 - link

    It's basically as far from 'just a bump in clock speed' as any follow up release short of a full architecture revamp, but yeah ok. Reply
  • rtho782 - Thursday, August 10, 2017 - link

    The whole game mode/creator mode, UMA/NUMA, etc seems a mess. Games not working with more than 20 threads is a joke although not AMDs fault.... Reply
  • mapesdhs - Thursday, August 10, 2017 - link

    Why is it a mess if peope choose to buy into this level of tech? It's bring formerly Enterprise-level tech to the masses, the very nature of how this stuff works makes it clear there are tradeoffs in design. AMD is forced to start off by dealing with a sw market that for years has focused on the prevalence of moderately low core count Intel CPUs with strong(er) IPC. Offering a simple hw choice to tailor the performance slant is a nice idea. I mean, what's your problem here? Do you not understand UMA vs. NUMA? If not, probably shouldn't be buying this level of tech. :D Reply
  • prisonerX - Thursday, August 10, 2017 - link

    That will change. Why invest masses of expensive brainpower in aggressively multithreading your game or app when no-one has the hardware to use it? No they do. Reply
  • Hurr Durr - Friday, August 11, 2017 - link

    Only in lala-land will HEDT processors occupy any meaningful part of the gaming market. We`re bound by consoles, and that is here to stay for years. Reply

Log in

Don't have an account? Sign up now