CPU Office Tests

The office programs we use for benchmarking aren't specific programs per-se, but industry standard tests that hold weight with professionals. The goal of these tests is to use an array of software and techniques that a typical office user might encounter, such as video conferencing, document editing, architectural modeling, and so on and so forth.

All of our benchmark results can also be found in our benchmark engine, Bench.

Chromium Compile (v56)

Our new compilation test uses Windows 10 Pro, VS Community 2015.3 with the Win10 SDK to compile a nightly build of Chromium. We've fixed the test for a build in late March 2017, and we run a fresh full compile in our test. Compilation is the typical example given of a variable threaded workload - some of the compile and linking is linear, whereas other parts are multithreaded.

Office: Chromium Compile (v56)

One of the interesting data points in our test is the Compile, and it is surprising to see the 1920X only just beat the Ryzen 7 chips. Because this test requires a lot of cross-core communication, the fewer cores per CCX there are, the worse the result. This is why the 1950X in SMT-off mode beats the 3 cores-per-CCX 1920X, along with lower latency memory support. We know that this test is not too keen on victim caches either, but it does seem that the 2MB per core ratio does well for the 1950X, and could explain the performance difference moving from 8 to 12 to 16 cores under the Zen microarchitecture.

PCMark8: link

Despite originally coming out in 2008/2009, Futuremark has maintained PCMark8 to remain relevant in 2017. On the scale of complicated tasks, PCMark focuses more on the low-to-mid range of professional workloads, making it a good indicator for what people consider 'office' work. We run the benchmark from the commandline in 'conventional' mode, meaning C++ over OpenCL, to remove the graphics card from the equation and focus purely on the CPU. PCMark8 offers Home, Work and Creative workloads, with some software tests shared and others unique to each benchmark set.

Office: PCMark8 Home (non-OpenCL)

Office: PCMark8 Work (non-OpenCL)

Strangely, PCMark 8's Creative test seems to be failing across the board. We're trying to narrow down the issue.

SYSmark 2014 SE: link

SYSmark is developed by Bapco, a consortium of industry CPU companies. The goal of SYSmark is to take stripped down versions of popular software, such as Photoshop and Onenote, and measure how long it takes to process certain tasks within that software. The end result is a score for each of the three segments (Office, Media, Data) as well as an overall score. Here a reference system (Core i3-6100, 4GB DDR3, 256GB SSD, Integrated HD 530 graphics) is used to provide a baseline score of 1000 in each test.

A note on context for these numbers. AMD left Bapco in the last two years, due to differences of opinion on how the benchmarking suites were chosen and AMD believed the tests are angled towards Intel processors and had optimizations to show bigger differences than what AMD felt was present. The following benchmarks are provided as data, but the conflict of opinion between the two companies on the validity of the benchmark is provided as context for the following numbers.

Office: SYSMark 2014 SE (Overall)

Benchmarking Performance: CPU Encoding Tests Benchmarking Performance: CPU Legacy Tests
Comments Locked

347 Comments

View All Comments

  • blublub - Sunday, August 13, 2017 - link

    From what I have read is that all TR do 3.9hhz and some even 4-4.1ghz on all cores .

    What are your temp when running all 10c @4.6ghz prime for 1-2hrs
  • Zingam - Sunday, August 13, 2017 - link

    Ian, how about testing mobile CPUs - for games and for office work. Aren't mobile CPUs selling much larger numbers thatn desktop ones these days?
    I can't find a single benchmark comparing i5-7300hq vs i7-7700hq vs i7-7700K showing the difference in productivity workloads and not just for rendering pretty pictures but also for more specific tasks as compiling software etc.

    I also would like to see some sort of comparison of new generation to all generations upto 10 years back in time. I'd like to know how much did performance increase since the age of Nehelem. At least from now on there should be a single test to display the relative performance increase over the last few generations. The average user doesn't upgrade their PC every year. The average user maybe upgrades every 5 years and it is really difficult to find out how much peformance increase would one get with an upgrade.
  • SanX - Sunday, August 13, 2017 - link

    I agree, there must be 5-7 years old processors in the charts
  • SanX - Sunday, August 13, 2017 - link

    Why one core of Apple A10 costs $10 but one core of Intel 7900x costs 10x more?
  • oranos - Sunday, August 13, 2017 - link

    so its complete dogsh*t for the segment which is driving the PC market right now: gaming. got it.
  • ballsystemlord - Sunday, August 13, 2017 - link

    Hey Ian, you've been talking about anandtech's great database where we can see all the cool info. Well, according to your database the Phenom II 6 core 1090T is equally powerful when compared to the 16 core threadripper!!!!!!! http://www.anandtech.com/bench/product/1932?vs=146
    With those sorts of numbers why would anyone plan an upgrade?
    (And there is also only one metric displayed, strange!)
    Not to play the Intel card on you as others do, but this is a serious problem for at least the AMD lineup of processors.
  • jmelgaard - Monday, August 14, 2017 - link

    o.O... I don't know how you derived that conclusion? you need a guide on how to read the database?...
  • BurntMyBacon - Monday, August 14, 2017 - link

    For anyone looking for an overall fps for two pass encoding here is your equation (hope my math is correct):
    FPS = 2*FPS1*FPS2/(FPS2+FPS1)

    No, you can't just average the FPS scores from each pass as the processor will spend more time in the slower pass.

    For the x264 encoding test, for example, a few relevant FPS scores end up being:
    i9-7900X: 122.56
    i7-7820X: 114.37
    i7-6900K: 95.26
    i7-7740X: 82.74

    TR-1950X: 118.13
    TR-1950X(g): 117.00
    TR-1920X: 111.74
    R7-1800X: 100.19

    Since two pass encoding requires both passes to be usable, getting an overall FPS score seems somewhat relevant. Alternately, using time to completion is would present the same information in a different manner. Though, it would be difficult to extrapolate performance results to estimate performance in other encodes without also posting the number of frames encoded.
  • goldgrenade - Thursday, January 4, 2018 - link

    Take all those Intel FPS performance counters and multiply them by .7 and you have what their chips actually run at without a major security flaw in them.

    Let's see that would be...

    i9-7900X: 85.792
    i7-7820X: 80.059
    i7-6900K: 66.682
    i7-7740X: 57.918

    And that's at best. It can be up to 50% degradation when rendering or having to do many small file accesses or repeated operations with KAISER.
  • Gastec - Tuesday, August 15, 2017 - link

    I've having a hard time trying to swallow "Threadripper is a consumer focused product" line considering the prices to "consume" it: $550 for the MB, $550 for the TR1900X ($800 or $1000 for the others is just dreaming) then the RAM. The MB(at least the Asus one) should be $200 less, but I get it, they are trying to squeeze as much as possible from the...consumers. Now don't get me wrong and I mean no offence for the rich ones among you, but those CPU are for Workstations. WORK, not gamestations. Meaning you would need them to help you make your money, faster.

Log in

Don't have an account? Sign up now