2017 CPU Benchmarking

For our review, we are implementing our fresh CPU testing benchmark suite, using new scripts developed specifically for this testing. This means that with a fresh OS install, we can configure the OS to be more consistent, install the new benchmarks, maintain version consistency without random updates and start running the tests in under 5 minutes. After that it's a one button press to start an 8-10hr test (with a high-performance core) with nearly 100 relevant data points in the benchmarks given below. The tests cover a wide range of segments, some of which will be familiar but some of the tests are new to benchmarking in general, but still highly relevant for the markets they come from.

Our new CPU tests go through six main areas. We cover the Web (we've got an un-updateable version of Chrome 56), general system tests (opening tricky PDFs, emulation, brain simulation, AI, 2D image to 3D model conversion), rendering (ray tracing, modeling), encoding (compression, AES, h264 and HEVC), office based tests (PCMark and others), and our legacy tests, throwbacks from another generation of bad code but interesting to compare.

Our graphs typically list CPUs with microarchitecture, SKU name, cost and power. The cost will be one of two numbers, either the 1k unit price 'tray price' for when a business customer purchases 1000 CPUs, or the MSRP likely to be found at retail. The problem here is that neither Intel nor AMD are consistent: Intel has a tray price for every CPU, but an MSRP only for parts sold at retail. AMD typically quotes MSRP for CPUs at retail, tray prices for enterprise CPUs, and doesn't say much about OEM only parts. We try to find a balance here, so prices may be $10-$20 from what you might expect.

A side note on OS preparation. As we're using Windows 10, there's a large opportunity for something to come in and disrupt our testing. So our default strategy is multiple: disable the ability to update as much as possible, disable Windows Defender, uninstall OneDrive, disable Cortana as much as possible, implement the high performance mode in the power options, and disable the internal platform clock which can drift away from being accurate if the base frequency drifts (and thus the timing ends up inaccurate).

Web Tests on Chrome 56

Sunspider 1.0.2
Mozilla Kraken 1.1
Google Octane 2.0
WebXPRT15

System Tests

PDF Opening
FCAT
3DPM v2.1
Dolphin v5.0
DigiCortex v1.20
Agisoft PhotoScan v1.0

Rendering Tests

Corona 1.3
Blender 2.78
LuxMark CPU C++
LuxMark CPU OpenCL
POV-Ray 3.7.1b4
Cinebench R15 ST
Cinebench R15 MT

Encoding Tests

7-Zip 9.2
WinRAR 5.40
AES Encoding (TrueCrypt 7.2)
HandBrake v1.0.2 x264 LQ
HandBrake v1.0.2 x264-HQ
HandBrake v1.0.2 HEVC-4K

Office / Professional

PCMark8
Chromium Compile (v56)
SYSmark 2014 SE

Legacy Tests

3DPM v1 ST / MT
x264 HD 3 Pass 1, Pass 2
Cinebench R11.5 ST / MT
Cinebench R10 ST / MT

A side note - a couple of benchmarks (LuxMark) weren't fully 100% giving good data during testing. Need to go back and re-work this part of our testing.

2017 CPU Gaming Tests

For our new set of GPU tests, we wanted to think big. There are a lot of users in the ecosystem that prioritize gaming above all else, especially when it comes to choosing the correct CPU. If there's a chance to save $50 and get a better graphics card for no loss in performance, then this is the route that gamers would prefer to tread. The angle here though is tough - lots of games have different requirements and cause different stresses on a system, with various graphics cards having different reactions to the code flow of a game. Then users also have different resolutions and different perceptions of what feels 'normal'. This all amounts to more degrees of freedom than we could hope to test in a lifetime, only for the data to become irrelevant in a few months when a new game or new GPU comes into the mix. Just for good measure, let us add in DirectX 12 titles that make it easier to use more CPU cores in a game to enhance fidelity.

Our original list of nine games planned in February quickly became six, due to the lack of professional-grade controls on Ubisoft titles. If you want to see For Honor, Steep or Ghost Recon: Wildlands benchmarked on AnandTech, point Ubisoft Annecy or Ubisoft Montreal in my direction. While these games have in-game benchmarks worth using, unfortunately they do not provide enough frame-by-frame detail to the end user, despite using it internally to produce the data the user eventually sees (and it typically ends up obfuscated by another layer as well). I would instead perhaps choose to automate these benchmarks via inputs, however the extremely variable loading time is a strong barrier to this.

So we have the following benchmarks as part of our 4/2 script, automated to the point of a one-button run and out pops the results four hours later, per GPU. Also listed are the resolutions and settings used.

  • Civilization 6 (1080p Ultra, 4K Ultra)
  • Ashes of the Singularity: Escalation* (1080p Extreme, 4K Extreme)
  • Shadow of Mordor (1080p Ultra, 4K Ultra)
  • Rise of the Tomb Raider #1 - GeoValley (1080p High, 4K Medium)
  • Rise of the Tomb Raider #2 - Prophets (1080p High, 4K Medium)
  • Rise of the Tomb Raider #3 - Mountain (1080p High, 4K Medium)
  • Rocket League (1080p Ultra, 4K Ultra)
  • Grand Theft Auto V (1080p Very High, 4K High)

For each of the GPUs in our testing, these games (at each resolution/setting combination) are run four times each, with outliers discarded. Average frame rates, 99th percentiles and 'Time Under x FPS' data is sorted, and the raw data is archived.

The four GPUs we've managed to obtain for these tests are:

  • MSI GTX 1080 Gaming X 8G
  • ASUS GTX 1060 Strix 6G
  • Sapphire Nitro R9 Fury 4GB
  • Sapphire Nitro RX 480 8GB

In our testing script, we save a couple of special things for the GTX 1080 here. The following tests are also added:

  • Civilization 6 (8K Ultra, 16K Lowest)

This benchmark, with a little coercion, are able to be run beyond the specifications of the monitor being used, allowing for 'future' testing of GPUs at 8K and 16K with some amusing results. We are only running these tests on the GTX 1080, because there's no point watching a slideshow more than once.

Test Bed and Setup Benchmarking Performance: CPU System Tests
POST A COMMENT

176 Comments

View All Comments

  • iwod - Monday, July 24, 2017 - link

    Intel has 10nm and 7nm by 2020 / 2021. Core Count is basically a solved problem, limited only by price.

    What we need is a substantial breakthrough in single thread performance. May be there are new material that could bring us 10+Ghz. But those aren't even on the 5 years roadmap.
    Reply
  • mapesdhs - Monday, July 24, 2017 - link

    That's more down to better sw tech, which alas lags way behind. It needs skills that are largely not taught in current educational establishments. Reply
  • wolfemane - Monday, July 24, 2017 - link

    Under Handbrake testing, just above the first graph you state:
    "Low Quality/Resolution H264: He we transcode a 640x266 H264 rip of a 2 hour film, and change the encoding from Main profile to High profile, using the very-fast preset."

    I think you mean to say "HERE we transcode..."

    Great article overall. Thank you!
    Reply
  • Ian Cutress - Monday, July 24, 2017 - link

    Thanks, corrected :) Reply
  • wolfemane - Monday, July 24, 2017 - link

    I wish your team would finally add in an edit button to comments! :)

    On the last graph ENCODING: Handbrake HEVC (4k) you don't list the 1800x, but it is present in the previous two graphs @ LQ and HQ. Was there an issue with the 1800x preventing 4k testing? Quite interested in it's results if you have them.
    Reply
  • Ian Cutress - Monday, July 24, 2017 - link

    When I first did the HEVC testing for the Ryzen 7 review, there was a slight issue in it running and halfway through I had to change the script because the automation sometimes dropped a result (like the 1800X which I didn't notice until I was 2-3 CPUs down the line). I need to put the 1800X back on anyway for AGESA 1006, which will be in an upcoming article. Reply
  • IanHagen - Monday, July 24, 2017 - link

    One thing that caught my eye for a while is how compile tests using GCC or clang show much better results on Ryzen compared to using Microsoft's VS compiler. Phoronix tests clearly shows that. Thus, I cannot really believe yet on Ian's recurring explanation of Ryzen suffering from its victim L3 cache. After all, the 1800X beats the 7700K by a sizable margin when compiling the Linux kernel.

    Isn't Ryzen relatively poor performance compiling Chromium due to idiosyncrasies of the VS compiler?
    Reply
  • Ian Cutress - Monday, July 24, 2017 - link

    The VS compiler seems to love L3 cache, then. The 1800X does have 2x threads and 2x cores over the 7700K, accounting for the difference. We saw a -17% drop going from SKL-S with its fully inclusive L3 to SKL-SP with a victim L3, clock for clock.

    Chromium was the best candidate for a scripted, consistent compile workflow I could roll into our new suite (and runs on Windows). Always open for suggestions that come with an ELI5.
    Reply
  • ddriver - Monday, July 24, 2017 - link

    So we are married to chromium, because it only compiles with msvc on windows?

    Or maybe because it is a shitty implementation that for some reason stacks well with intel's offerings?

    Pardon my ignorance, I've only been a multi-platform software developer for 8 years, but people who compile stuff a lot usually don't compile chromium all day.

    I'd say go GCC or Clang, because those are quality community drive open source compilers that target a variety of platforms, unlike msvc. I mean if you really want to illustrate the usefulness of CPUs for software developers, which at this point is rather doubtful...
    Reply
  • Ian Cutress - Monday, July 24, 2017 - link

    Again, find me something I can rope into my benchmark suite with an ELI5 guide and I try and find time to look into it. The Chromium test took the best part of 2-3 days to get in a position where it was scripted and repeatable and fit with our workflow - any other options I examined weren't even close. I'm not a computer programmer by day either, hence the ELI5 - just years old knowledge of using Commodore BASIC, batch files, and some C/C++/CUDA in VS. Reply

Log in

Don't have an account? Sign up now