2017 CPU Benchmarking

For our review, we are implementing our fresh CPU testing benchmark suite, using new scripts developed specifically for this testing. This means that with a fresh OS install, we can configure the OS to be more consistent, install the new benchmarks, maintain version consistency without random updates and start running the tests in under 5 minutes. After that it's a one button press to start an 8-10hr test (with a high-performance core) with nearly 100 relevant data points in the benchmarks given below. The tests cover a wide range of segments, some of which will be familiar but some of the tests are new to benchmarking in general, but still highly relevant for the markets they come from.

Our new CPU tests go through six main areas. We cover the Web (we've got an un-updateable version of Chrome 56), general system tests (opening tricky PDFs, emulation, brain simulation, AI, 2D image to 3D model conversion), rendering (ray tracing, modeling), encoding (compression, AES, h264 and HEVC), office based tests (PCMark and others), and our legacy tests, throwbacks from another generation of bad code but interesting to compare.

Our graphs typically list CPUs with microarchitecture, SKU name, cost and power. The cost will be one of two numbers, either the 1k unit price 'tray price' for when a business customer purchases 1000 CPUs, or the MSRP likely to be found at retail. The problem here is that neither Intel nor AMD are consistent: Intel has a tray price for every CPU, but an MSRP only for parts sold at retail. AMD typically quotes MSRP for CPUs at retail, tray prices for enterprise CPUs, and doesn't say much about OEM only parts. We try to find a balance here, so prices may be $10-$20 from what you might expect.

A side note on OS preparation. As we're using Windows 10, there's a large opportunity for something to come in and disrupt our testing. So our default strategy is multiple: disable the ability to update as much as possible, disable Windows Defender, uninstall OneDrive, disable Cortana as much as possible, implement the high performance mode in the power options, and disable the internal platform clock which can drift away from being accurate if the base frequency drifts (and thus the timing ends up inaccurate).

Web Tests on Chrome 56

Sunspider 1.0.2
Mozilla Kraken 1.1
Google Octane 2.0
WebXPRT15

System Tests

PDF Opening
FCAT
3DPM v2.1
Dolphin v5.0
DigiCortex v1.20
Agisoft PhotoScan v1.0

Rendering Tests

Corona 1.3
Blender 2.78
LuxMark CPU C++
LuxMark CPU OpenCL
POV-Ray 3.7.1b4
Cinebench R15 ST
Cinebench R15 MT

Encoding Tests

7-Zip 9.2
WinRAR 5.40
AES Encoding (TrueCrypt 7.2)
HandBrake v1.0.2 x264 LQ
HandBrake v1.0.2 x264-HQ
HandBrake v1.0.2 HEVC-4K

Office / Professional

PCMark8
Chromium Compile (v56)
SYSmark 2014 SE

Legacy Tests

3DPM v1 ST / MT
x264 HD 3 Pass 1, Pass 2
Cinebench R11.5 ST / MT
Cinebench R10 ST / MT

A side note - a couple of benchmarks (LuxMark) weren't fully 100% giving good data during testing. Need to go back and re-work this part of our testing.

2017 CPU Gaming Tests

For our new set of GPU tests, we wanted to think big. There are a lot of users in the ecosystem that prioritize gaming above all else, especially when it comes to choosing the correct CPU. If there's a chance to save $50 and get a better graphics card for no loss in performance, then this is the route that gamers would prefer to tread. The angle here though is tough - lots of games have different requirements and cause different stresses on a system, with various graphics cards having different reactions to the code flow of a game. Then users also have different resolutions and different perceptions of what feels 'normal'. This all amounts to more degrees of freedom than we could hope to test in a lifetime, only for the data to become irrelevant in a few months when a new game or new GPU comes into the mix. Just for good measure, let us add in DirectX 12 titles that make it easier to use more CPU cores in a game to enhance fidelity.

Our original list of nine games planned in February quickly became six, due to the lack of professional-grade controls on Ubisoft titles. If you want to see For Honor, Steep or Ghost Recon: Wildlands benchmarked on AnandTech, point Ubisoft Annecy or Ubisoft Montreal in my direction. While these games have in-game benchmarks worth using, unfortunately they do not provide enough frame-by-frame detail to the end user, despite using it internally to produce the data the user eventually sees (and it typically ends up obfuscated by another layer as well). I would instead perhaps choose to automate these benchmarks via inputs, however the extremely variable loading time is a strong barrier to this.

So we have the following benchmarks as part of our 4/2 script, automated to the point of a one-button run and out pops the results four hours later, per GPU. Also listed are the resolutions and settings used.

  • Civilization 6 (1080p Ultra, 4K Ultra)
  • Ashes of the Singularity: Escalation* (1080p Extreme, 4K Extreme)
  • Shadow of Mordor (1080p Ultra, 4K Ultra)
  • Rise of the Tomb Raider #1 - GeoValley (1080p High, 4K Medium)
  • Rise of the Tomb Raider #2 - Prophets (1080p High, 4K Medium)
  • Rise of the Tomb Raider #3 - Mountain (1080p High, 4K Medium)
  • Rocket League (1080p Ultra, 4K Ultra)
  • Grand Theft Auto V (1080p Very High, 4K High)

For each of the GPUs in our testing, these games (at each resolution/setting combination) are run four times each, with outliers discarded. Average frame rates, 99th percentiles and 'Time Under x FPS' data is sorted, and the raw data is archived.

The four GPUs we've managed to obtain for these tests are:

  • MSI GTX 1080 Gaming X 8G
  • ASUS GTX 1060 Strix 6G
  • Sapphire Nitro R9 Fury 4GB
  • Sapphire Nitro RX 480 8GB

In our testing script, we save a couple of special things for the GTX 1080 here. The following tests are also added:

  • Civilization 6 (8K Ultra, 16K Lowest)

This benchmark, with a little coercion, are able to be run beyond the specifications of the monitor being used, allowing for 'future' testing of GPUs at 8K and 16K with some amusing results. We are only running these tests on the GTX 1080, because there's no point watching a slideshow more than once.

Test Bed and Setup Benchmarking Performance: CPU System Tests
Comments Locked

176 Comments

View All Comments

  • mapesdhs - Monday, July 24, 2017 - link

    2700K, +1.5GHz every time.
  • shabby - Monday, July 24, 2017 - link

    So much for upgrading from a kbl-x to skl-x when the motherboard could fry the cpu, nice going intel.
  • Nashiii - Monday, July 24, 2017 - link

    Nice article Ian. What I will say is I am a little confused around this comment:

    "Intel wins for the IO and chipset, offering 24 PCIe 3.0 lanes for USB 3.1/SATA/Ethernet/storage, while AMD is limited on that front, having 8 PCIe 2.0 from the chipset."

    You forgot to mention the AMD total PCI-E IO. It has 24 PCI-E 3.0 lanes with 4xPCI-e 3.0 going to the chipset which can be set to 8x PCI-E 2.0 if 5Gbps is enough per lane, i.e in the case of USB3.0.

    I have read that Kabylake-X only has 16 PCI-E 3.0 lanes native. Not sure about PCH support though...
  • KAlmquist - Monday, July 24, 2017 - link

    With Kabylake-X, the only I/O that doesn't go through the chipset is the 16 PCI-E 3.0 lanes you mention. With Ryzen, in addition to what is provided by the chipset, the CPU provides

    1) Four USB 3.1 connections
    2) Two SATA connections
    3) 18 PCI-E 3.0 lanes, or 20 lanes if you don't use the SATA connections

    So if you just look at the CPU, Ryzen has more connectivity than Kabylake-X, but the X299 chip set used with Kabylake-X is much more capable (and expensive) than anything in the AMD lineup. Also, the X299 doesn't provide any USB 3.1 ports (or more precisely, 10 gb per second speed ports), so those are typically provided by a separate chip, adding to the cost of X299 motherboards.
  • Allan_Hundeboll - Monday, July 24, 2017 - link

    Interesting review with great benchmarks. (I don't understand why so many reviews only report average frames pr. second)
    The ryzen r5 1600 seems to offer great value for money, but i'm a bit puzzled why the slowest clocked R5 beats the higher clocked R7 in a lot of the 99% benchmarks, Im guessing its because the latency delta when moving data from one core to another penalize the higher core count R7 more?
  • BenSkywalker - Monday, July 24, 2017 - link

    The gaming benchmarks are, uhm..... pretty useless.

    Third tier graphics cards as a starting point, why bother?

    Seems like an awful lot of wasted time. As a note you may want to consider- when testing a new graphics card you get the fastest CPU you can so we can see what the card is capable of, when testing a new CPU you get the fastest GPU you can so we can see what the CPU is capable of. The way the benches are constructed, pretty useless for those of us that want to know gaming performance.
  • Tetsuo1221 - Monday, July 24, 2017 - link

    Benchmarking at 1080p... enough said.. Completely and utterly redundant
  • Qasar - Tuesday, July 25, 2017 - link

    why is benchmarking @ 1080p Completely and utterly redundant ?????
  • meacupla - Tuesday, July 25, 2017 - link

    I don't know that guy's particulars, but, to me, using X299 to game at 1080p seems like a waste.
    If I was going to throw down that kind of money, I would want to game at 1440p or 4K
  • silverblue - Tuesday, July 25, 2017 - link

    Yes, but 1080p shifts the bottleneck towards the CPU.

Log in

Don't have an account? Sign up now